JUNOScript™ API Guide

Release 5.5

Juniper Networks, Inc.

1194 North Mathilda Avenue
Sunnyvale, CA 94089

USA

408-745-2000
WWW.juniper.net

Part Number: 530-008312-01, Revision 1

This product includes the Envoy SNMP Engine, developed by Epilogue Technology, an Integrated Systems Company. Copyright © 1986—1997, Epilogue
Technology Corporation. All rights reserved. This program and its documentation were developed at private expense, and no part of them is in the public
domain.

This product includes memory allocation software developed by Mark Moraes, copyright © 1988, 1989, 1993, University of Toronto.

This product includes FreeBSD software developed by the University of California, Berkeley, and its contributors. All of the documentation and software
included in the 4.4BSD and 4.4BSD-Lite Releases is copyrighted by The Regents of the University of California. Copyright © 1979, 1980, 1983, 1986, 1988,
1989, 1991, 1992, 1993, 1994. The Regents of the University of California. All rights reserved.

GateD software copyright © 1995, The Regents of the University. All rights reserved. Gate Daemon was originated and developed through release 3.0 by
Cornell University and its collaborators. Gated is based on Kirton’s EGP, UC Berkeley’s routing daemon (routed), and DCN’s HELLO routing protocol.
Development of Gated has been supported in part by the National Science Foundation. Portions of the GateD software copyright © 1988, Regents of the
University of California. All rights reserved. Portions of the GateD software copyright © 1991, D. L. S. Associates.

This product includes software developed by Maker Communications, Inc., Copyright © 1996, 1997, Maker Communications, Inc.

Juniper Networks is registered in the U.S. Patent and Trademark Office and in other countries as a trademark of Juniper Networks, Inc. Broadband Cable
Processor, ERX, ESP, G10, Internet Processor, JUNOS, JUNOScript, M5, M10, M20, M40, M40e, M160, MRX, M-series, NMC-RX, SDX, ServiceGuard, T320,
T640, T-series, UMC, and Unison are trademarks of Juniper Networks, Inc. All other trademarks, service marks, registered trademarks, or registered service
marks are the property of their respective owners. All specifications are subject to change without notice.

JUNOScript API Guide, Release 5.5

Copyright © 2002, Juniper Networks, Inc.

All rights reserved. Printed in USA.

Writer: Tony Mauro

Editor: Sonia Saruba

Covers and template design: Edmonds Design

Revision History
20 September 2002—First edition.

The information in this document is current as of the date listed in the revision history above.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify, transfer or
otherwise revise this publication without notice.

Products made or sold by Juniper Networks (including the M5, M10, M20, M40, M40e, and M160 routers, T320 router, T640 routing node, and the JUNOS
software) or components thereof might be covered by one or more of the following patents that are owned by or licensed to Juniper Networks: U.S. Patent
Nos. 5,473,599, 5,905,725, 5,909,440, 6,333,650, 6,359,479, and 6,406,312.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. The JUNOS software has no known time-related limitations through the year
2038. However, the NTP application is known to have some difficulty in the year 2036.

SOFTWARE LICENSE
The terms and conditions for using this software are described in the software license contained in the acknowledgment to your purchase order or, to the
extent applicable, to any reseller agreement or end-user purchase agreement executed between you and Juniper Networks. By using this software, you

indicate that you understand and agree to be bound by those terms and conditions.

Generally speaking, the software license restricts the manner in which you are permitted to use the software and may contain prohibitions against certain
uses. The software license may state conditions under which the license is automatically terminated. You should consult the license for further details.

For complete product documentation, please see the Juniper Networks Web site at www.juniper.net/techpubs.

About this Manual

(0] o] 1T 1AY=L ST T PSP UUPPOPPPPPTPP PR ix

F N0 [0 1= oo PSP U PP PP PP OPPRP ix
DOoCUMENt OFgANIZALIONcciiiiiiiiie ettt ettt ettt e e e e e e e e e e e e X

General DocUmMENt CONVENTIONScc.ooiuiiiiiiaiaiiieie ettt ettt e e e e e eeeee e Xi

List of Technical PUDICAtIONSccoiiiiiiii e xii
Documentation FEEdDACKccoiiiiiiiii e xiii

HOW t0 REOQUEST SUPPOITeeieiiiiiiiii ettt e xiii

Overview

Introduction to the JUNOSCHPt AP ... 3
ADOUE XMLttt ettt ettt e e e e sttt e e e e aabbbeee e e e nnnnee 4

XML and JUNOSCHPE TAGS -+veenvveeeinieeeritiiesitiee ettt e sne e 4

Document Type Definitioncccooviieiiiiiiiii e 5

Advantages of Using the JUNOSCIIPt APoooviiiiiiiiiiiee e 5
Overview of @ JUNOSCIPE SESSION ...c.ccoiuiiiiieiiiiiiiie ettt ee e 6

Session Control, Operational Requests, and Router Configuration

JUNOSCript SesSSion CONtrol...........cooiii e 9
General JUNOSCHIPt CONVENTIONSvieiiiiiiiiiie ittt ettt 9
Ordering and Context for Session Control Tag Elementsccccccceevieeenee 10
Ordering and Context for Request and Response Tag Elements..................... 10
Ordering and Context for a Request Tag Element’s Child Tag Elements........ 11
Ordering and Context for a Response Tag Element Element’s Child Tag
EIBIMENTS ..o 11
Spaces, Newlines, and Other White Space Characterscccccevvveeeeinieenns 11
XML COMIMEBNTSetiiiieiiiiii et et e e e s e e s e snnn e e e e nnanee 12

Table of Contents

° JUNOScript 5.5 API Guide

XML Processing INSTIUCHIONS.co.uvviiie e iiiiie et e e e e 12
Predefined Entity REfErenCeSooueiieiiiiiiiiie e 12
Start, Control, and End a JUNOSCIIPE SESSIONcccvvviieeeiiiiiiiee et siiie e 14
Supported Access Protocols
Prerequisites for Establishing a Connection...........cccccevvevviiieeice e, 15
Prerequisites for clear-text CONNECLIONScooiuiieieeiiiiiiiie e 15
Prerequisites for ssh CONNECLIONS.........ccuuviiiiiiiiiiie e
Prerequisites for SSL CONNECLIONSccuuvuiieeaiiiiiie e
Prerequisites for telnet Connections .
Connect to the JUNOSCHPE SEIVETcc.vviiiiieeiiiee ettt
Connect to the JUNOScript Server from the CLI...........ccccovveeiiiiiinieennns 18
Start the JUNOSCIIPt SESSIONvvvieeieiiiiieeee e
Emit the Initialization Pl and Tag
Emit the <?Xml?= Pl.........cccccceernnnnnen.
Emit the Opening <<junoscript= Tag
Parse the Initialization Pl and Tag from the JUNOScript Server 21
Parse the JUNOScript Server’'s <<?Xml?= Pl.............c..ccouerurrn. .21
Parse the JUNOScript Server’s Opening <<junoscript= Tag
Verify CompatiDilityeeeeiiiiii e .
Supported ProtoCOl VEISIONSc.eeeeiiiiiiiieeeaiiieee et
Authenticate with the JUNOSCIIPE SEIVETooviiiiiiiiiiicee e
Exchange Tagged Data...........cceevvveeenivienineennnee.
Send a Request to the JUNOScript Server
JUNOSCript ReqUueSt ClaSSEScueeeeieiiiiiiiieeiiiiee e
Include Attributes in the Opening <<rpc=Tagccccevruvrerrurrrrnne 27
Parse the JUNOSCript Server RESPONSEcccoovurrieeeeiiniiiieeeeeeiiiiiee e e
The xmlns:junos Attribute......................
JUNOScript Server Response Classes
Use a Standard API to Parse Response Tag Elementsc.cc....... 30
End the Session and Close the Connection
Handle an Error Condition

Halt @ REQUEST ..ot

Display CLI Output as JUNOScript Tag Elements

Example of @ JUNOSCIIPE SESSIONvveiiiieiiiie ettt

Operational REQUESTS ... 35

Request Operational INfOrmationccooveeiiiiiiiiie e 35
Map Child Tag Elements to Options with Variable Values36
Map Child Tag Elements to Fixed-Form Options37

Parse an Operational RESPONSEcciiiiiiiiiiiiiieee et 37

Requests and Responses without Defined JUNOScript Tag Elements 37

Router Configuration ... 39

Mapping between CLI Configuration Statements and JUNOScript Tag
EIBMENTS .o s
Tag Element Mappings for Top-Level (Container) Statements............ccccccouee.
Tag Element Mappings for Leaf Statements
Tag Element Mappings for Identifiersccccceeenee.
Tag Element Mappings for Leaf Statements with Multiple Values...................
Tag Element Mappings for Multiple Options on One or More Lines
Tag Element Mapping for Comments about Configuration Statements 45
Same Tag Elements Used for Requests and RESPONSES.........cccvvvvveeeeiiiiieeeeesiinnnne.
Overview of Router Configuration Proceduresccoeoveiieeeeiiiee s
Lock the Candidate CoONfigQurationcoccuveiiiieeiiiiiniie e
Automatically Discard Uncommitted Changescoccoveeeeiiiiiieeieniniieeeeennn
Request Configuration INfOrmation............c.ooouiiiiiiiiiiiii e
Specify the Committed or Candidate Configuration
Specify Formatted ASCII or JUNOScript-Tagged Outputcccccovveeerineennnne.
Request the Complete CoNfigurationcceevieeeiiiee e
Request One Hierarchy Level....................
Request a Single Configuration Object
Request an XML Schema for the Configuration Hierarchy
Change the Candidate Configuration............cccoocuuiiiiiiiiiiie e
Provide Configuration Data as Formatted ASCII or JUNOScript
Tag EIEMENTS ..o s
Merge Statements into the Current Configuration ...
Replace (Override) the Entire Current Configuration ...
Replace a Configuration Element.............cceoieiiiiiiiiiieeee e
Delete a Configuration Element ..o
Delete a Hierarchy Level....................
Delete a Configuration Object
Delete One or More Values from a Leaf Statement.............cccocceeevineenne 62
Delete a Fixed-FOrm OPLioNooceiiiiiiiiiiieee e 63
Change a Configuration Element’s Activation Statecccccoovuivieeeeriineenn. 63
Replace a Configuration Element and Change Its Activation State
SIMUIANEOUSIY ...
Roll Back to a Previous Configurationccccoouveeeiiiiniiiin e
Verify the Syntactic Correctness of the Candidate Configuration
Commit the Candidate Configuration..............oocuuiiiiiiiiiiiiee e
Commit and Synchronize the Configuration on Both Routing Engines........... 68
Commit the Configuration at a Specified Timeccccooiiiieiiiiiie e, 69
Commit a Configuration but Require Confirmation.............ccoccvviiiierncieennee. 70
Unlock the Candidate Configurationccccceeeviiiiniiieiiiee e 71

Table of Contents 0

Write JUNOScript Client Applications

Write a Perl Client Application ..., 75
Download the Module and Sample SCrPLS........covvveiiiiieriiie e 75
Module and SAmMPIE SCHPLS......cocuiiiiiiie et 75
Request and Load Configuration Data............coooceeiiieiiiiieieeeiiee e 76
Mapping of Perl Queries to JUNOScript Tag Elements..........cccoooceiiniiiiiieniiinenn. 77
Write a C Client Application ..., 83
Index
INOEX e 87

° JUNOScript 5.5 API Guide

List of Tables

Table 1: Juniper Networks Technical Documentationcccceveeiiiieeneeninns xii
Table 2: Predefined Entity Reference Substitutions for Tag Content Values......13
Table 3: Predefined Entity Reference Substitutions for Attribute Values........... 13
Table 4: Supported Access Protocols and Authentication Mechanisms............. 14
Table 5: Supported Protocol VErsioNnS...........ccoiiuiieieiiiiiiiie e 23
Table 6: Mapping of Perl/Java Methods to JUNOScript Tag Elements 77

List of Tables °

List of Tables

JUNOScript 5.5 API Guide

About this Manual

This chapter provides a high-level overview of the JUNOScript API Guide:
B Objectives on page ix

B Audience on page ix

Document Organization on page x

General Document Conventions on page Xi

List of Technical Publications on page xii

B Documentation Feedback on page xiii

How to Request Support on page xiii

Objectives

This manual describes how to use the JUNOScript application programming interface (API) to
configure or request information from the JUNOScript server running on a Juniper Networks
router. The JUNOScript API is a set of Extensible Markup Language (XML) tags that describe
hardware and software installed and configured on the router.

This manual documents a specific release of the JUNOScript API, as indicated on the
document title page. To obtain additional information about the JUNOScript API—either
corrections to or information omitted from this manual—refer to the printed software release
notes.

To obtain the most current version of this manual and the most current version of the
software release notes, refer to the product documentation page on the Juniper Networks
Web site, which is located at http://www.juniper.net/.
To order printed copies of this manual or to order a documentation CD-ROM, which contains
this manual, please contact your sales representative.

Audience
This manual is designed for Juniper Networks customers who want to write custom

applications for router configuration or monitoring. It assumes that you are familiar with
basic terminology and concepts of XML and of XML-parsing utilities such as the Document

Object Model (DOM) or Simple API for XML (SAX).
About this Manual °

Document Organization

Document Organization
This manual contains the following parts and chapters:

W Preface, “About this Manual” (this chapter), provides a brief description of the contents
and organization of this manual and describes how to obtain customer support.

W Part 1, “Overview,” provides an introduction to the JUNOScript API:

m Chapter 1, “Introduction to the JUNOScript API,” briefly describes the JUNOScript
APl and XML, and outlines a communications session between the JUNOScript
server and a client application.

W Part 2, “Session Control, Operational Requests, and Router Configuration,” describes
how to use the JUNOScript API to monitor router status and to read or change router
configuration:

m Chapter 2, “JUNOScript Session Control,” explains how to start, control, and
terminate a session with the JUNOScript server running on a Juniper Networks
router, and describes the conventions that client applications must obey when
exchanging JUNOScript-tagged data with the JUNOScript server.

m Chapter 3, “Operational Requests,” explains how to use the JUNOScript API to
request information about router status—the kind of information provided by
operational mode commands in the JUNOS command-line interface (CLI).

m Chapter 4, “Router Configuration,” describes how to use the JUNOScript API to
change router configuration or to request information about the current
configuration.

W Part 3, “Write JUNOScript Client Applications,” describes how to write client applications
that automate access to the JUNOScript server and parse its output.

m Chapter 5, “Write a Perl Client Application,” describes how to use the JUNOScript
Perl module to speed and simplify implementation of client applications written in
Perl. It also describes sample Perl scripts that illustrate how to use the Perl module.

m Chapter 6, “Write a C Client Application,” illustrates how a C-language client
application connects to the JUNOScript server.

This manual also contains an index.

‘ JUNOScript 5.5 API Guide

General Document Conventions

General Document Conventions
This document uses the following text conventions:

B Names of commands, files, and directories are shown in a sans serif font, as are
configuration hierarchy levels. The following example refers to the ssh command:

The client application invokes the ssh command.

B Examples of command output and the contents of files or XML document type
definitions (DTDs) are shown in a fixed-width font when it is important to preserve the
column alignment, or in sans serif font otherwise. The following example using sans
serif font is from the junos-chassis DTD:

<IELEMENT chassis-inventory (chassis?)>

W Options, which are variable terms for which you substitute appropriate values, are
shown in italics. The following example refers to the variable called identifier :

For identifier, substitute the name of this instance of the object.

B XML tag names are shown in sans serif font and enclosed in angle brackets, which is the
standard XML notation for tags. The angle brackets do not indicate that an element is
optional, as they do in the syntax statement for a JUNOS CLI command. The following
example refers to tags called <generation> and <local-index>:

Notice that the JUNOScript server emits the <generation> tag before the
<local-index> tag.

B Within a stream of XML tags, XML comments are enclosed within the strings <!--
and -->. The following example includes an XML comment:

<configuration>
<forwarding-options>
<sampling>
<disable/>
<!-- other children of the <sampling> tag -->
</sampling>
</forwarding-options>
</configuration>

Outside an XML data set, an ellipsis (...) represents parts of a file or example that are
omitted to highlight the remaining elements.

About this Manual °

List of Technical Publications

List of Technical Publications

Table 1 lists the software and hardware books for Juniper Networks routers and describes the
contents of each book.

Table 1: Juniper Networks Technical Documentation

Book

Description

JUNOS Internet Software Configuration Guides

Getting Started

Provides an overview of the JUNOS Internet software and describes how to install and upgrade the
software. This manual also describes how to configure system management functions and how to
configure the chassis, including user accounts, passwords, and redundancy.

Interfaces and Class of Service

Provides an overview of the interface and class-of-service functions of the JUNOS Internet software
and describes how to configure the interfaces on the router.

MPLS Applications

Provides an overview of traffic engineering concepts and describes how to configure traffic
engineering protocols.

Multicast

Provides an overview of multicast concepts and describes how to configure multicast routing
protocols.

Network Management

Provides an overview of network management concepts and describes how to configure various
network management features, such as SNMP, accounting options, and cflowd.

Policy Framework

Provides an overview of policy concepts and describes how to configure routing policy, firewall filters,
and forwarding options.

Routing and Routing Protocols

Provides an overview of routing concepts and describes how to configure routing, routing instances,
and unicast routing protocols.

VPNs

Provides an overview of Layer 2 and Layer 3 Virtual Private Networks (VPNs), describes how to
configure VPNs, and provides configuration examples.

JUNOS Internet Software References

Operational Mode Command Reference: Interfaces

Describes the JUNOS Internet software operational mode commands you use to monitor and
troubleshoot Juniper Networks routers.

Operational Mode Command Reference: Protocols,
Class of Service, Chassis, and Management

Describes the JUNOS Internet software operational mode commands you use to monitor and
troubleshoot Juniper Networks routers.

System Log Messages Reference

Describes how to access and interpret system log messages generated by JUNOS software modules
and provides a reference page for each message.

JUNOScript API Documentation

JUNOScript API Guide

Describes how to use the JUNOScript APl to monitor and configure Juniper Networks routers.

JUNOScript API Reference

Provides a reference page for each tag in the JUNOScript API.

JUNOS Internet Software Comprehensive Index

Comprehensive Index

Provides a complete index of all JUNOS Internet software books and the JUNOScript APl Guide.

Hardware Documentation

Hardware Guide

Describes how to install, maintain, and troubleshoot routers and router components. Each router
platform (M5 and M10 routers, M20 router, M40 router, M40e router, M160 router, and T640 routing
node) has its own hardware guide.

PIC Guide

Describes the router Physical Interface Cards (PICs). Each router platform has its own PIC guide.

JUNOScript 5.5 API Guide

Documentation Feedback

Documentation Feedback

We are always interested in hearing from our customers. Please let us know what you like
and do not like about the Juniper Networks documentation, and let us know of any
suggestions you have for improving the documentation. Also, let us know if you find any
mistakes in the documentation. Send your feedback to tech-doc@juniper.net.

How to Request Support

For technical support, contact Juniper Networks at support@juniper.net, or at 1-888-314-JTAC
(within the United States) or 408-745-2121 (from outside the United States).

About this Manual @

How to Request Support

@ JUNOScript 5.5 API Guide

Overview

W Introduction to the JUNOScript API on page 3

JUNOScript 5.5 API Guide

Introduction to the JUNOScript API

The JUNOScript application programming interface (API) is an Extensible Markup Language
(XML) application that Juniper Networks routers use to exchange information with client
applications. XML is a metalanguage for defining how to mark the organizational structures
and individual items in a data set or document with tags that describe the function of the
structures and items. The JUNOScript API defines tags for describing the components and
configuration of routers.

Client applications can configure or request information from a router by encoding the
request with JUNOScript tags and sending it to the JUNOScript server on the router. (The
JUNOScript server is a component of the management daemon [mgd process] running on
the router and does not appear as a separate entry in process listings.) The JUNOScript server
directs the request to the appropriate software modules within the router, encodes the
response in JUNOScript tags or formatted ASCII as requested by the client application, and
returns the result to the client application. For example, to request information about the
status of a router’s interfaces, a client application can send the JUNOScript
<get-interface-information> tag element. The JUNOScript server gathers the information and
returns it in the <interface-information> tag element.

This manual explains how to use the JUNOScript API to configure Juniper Networks routers or
request information about configuration or operation. The main focus is on writing client
applications to interact with the JUNOScript server, but you can also use the JUNOScript API
to build custom end-user interfaces for configuration and information retrieval and display,
such as a Web browser-based interface.
This chapter discusses the following topics:

B About XML on page 4

B Advantages of Using the JUNOScript API on page 5

B Overview of a JUNOScript Session on page 6

Introduction to the JUNOScript API e

About XML

About XML

XML is a language for defining a set of markers, called tags, that define the function and
hierarchical relationships of the parts of a document or data set. The tags look much like
Hypertext Markup Language (HTML) tags, but XML is actually a metalanguage used to define
tags that best suit the kind of data being marked.

The following sections discuss XML and JUNOScript:
B XML and JUNOScript Tags on page 4
B Document Type Definition on page 5
For more details about XML, see A Technical Introduction to XML at

http://www.xml.com/pub/98/10/guide0.html and the additional reference material at the
xml.com site. The official XML specification is available at http://www.w3.0org/TR/REC-xml.

XML and JUNOScript Tags

° JUNOScript 5.5 API Guide

JUNOScript tags obey the XML convention that a tag name indicates the kind of information
enclosed by the tag element. For example, the name of the JUNOScript <interface-state> tag
element indicates that it contains a description of a router interface’s current status, whereas
the name of the <input-bytes> tag element indicates that its contents specify the number of
bytes received.

JUNOScript tag names are enclosed in angle brackets, which is an XML convention. The
brackets are a required part of the complete tag name, and are not to be confused with the
angle brackets used in the JUNOS Internet software manuals to indicate optional parts of
command-line interface (CLI) command strings.

When tagging items in an XML-compliant document or data set, you always enclose the item
in paired opening and closing tags. XML is stricter in this respect than HTML, which
sometimes uses only opening tags. The following examples show paired opening and closing
tags:

<interface-state>enabled</interface-state>
<input-bytes>25378</input-bytes>

If a tag element is empty—has no contents—you can represent it either as a pair of opening
and closing tags with nothing between them or as a single tag with a forward slash after the
tag name. For example, the string <snmp-trap-flag/> represents the same empty tag as
<snmp-trap-flag></snmp-trap-flag>.

When discussing tags in text, this manual conventionally uses just the name of the opening
tag to represent the complete tag element (opening tag, contents, and closing tag). For
example, it usually refers to “the <input-bytes> tag element” rather than “the
<input-bytes>number-of-bytes</input-bytes> tag element.”

Advantages of Using the JUNOScript API

Document Type Definition

An XML-tagged document or data set is structured, because a set of rules specifies the
ordering and interrelationships of the items in it. The rules define the contexts in which each
tagged item can—and in some cases must—occur. A file called a document type definition, or
DTD, lists every tag element that can appear in the document or data set, defines the
parent-child relationships between the tags, and specifies other tag characteristics. The same
DTD can apply to many XML documents or data sets.

Advantages of Using the JUNOScript API

The JUNOScript API is a programmatic interface. The JUNOScript DTDs fully document all
options for every command and all elements in a configuration statement. JUNOScript tag
names clearly indicate the function of an element in a command or configuration statement.

The combination of meaningful tag names and the structural rules in a DTD makes it easy to
understand the content and structure of an XML-tagged data set or document. JUNOScript
tags make it straightforward for client applications that request information from a router to
parse the output and find specific information.

The following example illustrates how the JUNOScript APl makes it easier to parse router
output and extract the needed information. It compares formatted ASCIl and XML-tagged
versions of output from a router. The formatted ASCII follows:

Physical interface: fxp0O, Enabled, Physical link is Up
Interface index: 4, SNMP ifindex: 3

This is the JUNOScript-tagged version:

<interface>
<name>fxpO</name>
<admin-status>enabled</admin-status>
<operational-status>up</operational-status>
<index>4</index>
<snmp-index>3</snmp-index>

</interface>

When a client application needs to extract a specific piece of data from formatted ASCII
output, it must rely on the datum’s location, expressed either absolutely or with respect to
adjacent strings. Suppose that the client application wants to extract the interface index. It
can use a utility such as expect to locate specific strings, but one difficulty is that the number
of digits in the interface index is not necessarily predictable. The client application cannot
simply read a certain number of characters after the Interface index: label, but must instead
extract everything between the label and the subsequent string:

, SNMP iflIndex

A problem arises if the format or ordering of output changes in a later version of the
software, for example, if a Logical index field is added following the interface index number:

Physical interface: fxp0O, Enabled, Physical link is Up
Interface index: 4, Logical index: 12, SNMP ifindex: 3

Introduction to the JUNOScript API e

Overview of a JUNOScript Session

A search for the interface index number that relies on the SNMP ifindex string now returns
an incorrect result. The client application must be updated manually to search for the
following string instead:

, Logical index

In contrast, the structured nature of the JUNOScript-tagged output enables a client
application to retrieve the interface index by extracting everything within the opening
<index> tag and closing </index> tag. The application does not have to rely on an element’s
position in the output string, so the JUNOScript server can emit the child tags in any order
within the <interface> tags. Adding a new <logical-index> tag element in a future release
does not affect an application’s ability to locate the <index> tag element and extract its
contents.

Tagged output is also easier to transform into different display formats. For instance, you
might want to display different amounts of detail about a given router component at different
times. When a router returns formatted ASCII output, you have to design and write special
routines and data structures in your display program to extract and store the information
needed for a given detail level. In contrast, the inherent structure of JUNOScript output is an
ideal basis for a display program’s own structures. It is also easy to use the same extraction
routine for several levels of detail, simply ignoring the tags you do not need when creating a
less detailed display.

Overview of a JUNOScript Session

° JUNOScript 5.5 API Guide

Communication between the JUNOScript server and a client application is session-based: the
two parties explicitly establish a connection before exchanging data and close the connection
when they are finished. The streams of JUNOScript tags emitted by the JUNOScript server
and a client application each constitute a well-formed XML document, because the tag
streams obey the structural rules defined in the JUNOScript DTDs for the kind of information
they encode. Client applications must produce a well-formed XML document by emitting tags
in the required order and only in the legal contexts.

The following list outlines the basic structure of a JUNOScript session. For more specific
information, see “Start, Control, and End a JUNOScript Session” on page 14.

1. The client application establishes a connection to the JUNOScript server and opens the
JUNOScript session.

2. The JUNOScript server and client application exchange initialization tags, used to
determine if they are using compatible versions of the JUNOS Internet software and the
JUNOScript API.

3. The client application sends one or more requests to the JUNOScript server and parses
its responses.

4. The client application closes the JUNOScript session and the connection to the
JUNOScript server.

Session Control, Operational Requests, and Router Configuration

W JUNOScript Session Control on page 9
B Operational Requests on page 35

B Router Configuration on page 39

JUNOScript 5.5 API Guide

JUNOScript Session Control

This chapter explains how to start and terminate a session with the JUNOScript server, and
describes the Extensible Markup Language (XML) tag elements that client applications and
the JUNOScript server use to coordinate information exchange during the session. It
discusses the following topics:

General JUNOScript Conventions on page 9

Start, Control, and End a JUNOScript Session on page 14

Handle an Error Condition on page 31

Halt a Request on page 31

Display CLI Output as JUNOScript Tag Elements on page 32

Example of a JUNOScript Session on page 32

General JUNOScript Conventions
A client application must comply with XML and JUNOScript conventions. Compliant
applications are easier to maintain if the JUNOS Internet software or the JUNOScript
application programming interface (API) changes. The JUNOScript server always obeys the
conventions. The following sections describe JUNOScript conventions:

B Ordering and Context for Session Control Tag Elements on page 10

B Ordering and Context for Request and Response Tag Elements on page 10

Ordering and Context for a Request Tag Element’s Child Tag Elements on page 11

Ordering and Context for a Response Tag Element Element’s Child Tag Elements on
page 11

Spaces, Newlines, and Other White Space Characters on page 11

B XML Comments on page 12

XML Processing Instructions on page 12

Predefined Entity References on page 12

JUNOScript Session Control e

General JUNOScript Conventions

Ordering and Context for Session Control Tag Elements

A session control tag element is one that delimits the parts of a JUNOScript session. There are
tag elements that indicate the start or end of a session, identify a client request or server
response, and signal error conditions. Most session control tag elements can occur only in
certain contexts and in a prescribed order. JUNOScript session controllers include the
following:

B <?xml?>—An XML processing instruction (Pl), emitted by both the client application
and the JUNOScript server as they establish a JUNOScript session. For more information
about Pls, see “XML Processing Instructions” on page 12.

W <junoscript>—The root tag element for every JUNOScript session, emitted by both the
client application and the JUNOScript server as they establish and close the session.

B <rpc>—The container tag element that encloses each request emitted by the client
application. It can occur only within the <junoscript> tag element.

W <rpc-reply>—The container tag element that encloses each response returned by the
JUNOScript server. It can occur only within the <junoscript> tag element.

For more information about how to use these tag elements, see “Start, Control, and End a
JUNOScript Session” on page 14 and the summary of session control tag elements in the
JUNOScript APl Reference.

Ordering and Context for Request and Response Tag Elements

A request tag element is one generated by a client application to request information about a
router’s current status or configuration or to change the configuration. A request tag element
corresponds to a JUNOS command-line interface (CLI) operational command or configuration
statement. It can occur only within an <rpc> session control tag element.

A response tag element represents the JUNOScript server’s reply to a request tag element and
occurs only within an <rpc-reply> tag element.

The following example represents an exchange in which a client application emits the
<get-interface-information> request tag element with the <extensive/> flag and the
JUNOScript server returns the <interface-information> response tag element. (For
information about the xmiIns:junos and xmins attributes, see “Parse the JUNOScript Server
Response” on page 27.)

Client Application JUNOScript Server
<rpc>
<get-interface-information>
<extensive/>
</get-interface-information>
</rpc>
<rpc-reply xmins:junos="URL">
<interface-information xmins="URL">
<I- - child tags of the <interface-information> tag - ->
</interface-information>
</rpc-reply>

T1000

Q JUNOScript 5.5 API Guide

General JUNOScript Conventions

A client application can send only one request tag element at a time to a
particular router, and must not send another request tag element until it
receives the closing </rpc-reply> tag that represents the end of the

Note UNOScript server’s response to the current request.

Ordering and Context for a Request Tag Element’s Child Tag Elements

Some request tag elements contain child tag elements. For configuration request tag
elements, each child tag element represents a level in the JUNOS configuration hierarchy. For
operational request tag elements, each child tag element represents one of the options you
provide on the command line when issuing the equivalent CLI command.

Some request tag elements require that certain child tag elements be present. To make a
request successfully, a client application must emit the required child tag elements within the
request tag element’s opening and closing tags. If any of the request tag element’s children
are themselves container tag elements, the opening tag for each must occur before any of the
tag elements it contains, and the closing tag must occur before the opening tag for another
tag element at its hierarchy level.

In most cases, the ordering of child tag elements at one hierarchy level within a request tag
element is not significant. The important exception is the identifier tag for a configuration
element, which distinguishes the configuration element from other elements of its type. It
must occur first within the container tag element that represents the configuration element.
Most often the identifier tag element specifies the configuration element name and is called
<name>. For more information, see “Tag Element Mappings for Identifiers” on page 42.

Ordering and Context for a Response Tag Element Element’s Child Tag
Elements

The child tag elements of a response tag element represent the individual data items
returned by the JUNOScript server for a particular request. At one hierarchy level within a
response tag element, there is no prescribed order for the child tag elements, and the set of
child tag elements is subject to change in later releases of the JUNOScript API. Client
applications must not rely on the presence or absence of a particular tag element in the
JUNOScript server’s output, nor on the ordering of child tag elements within a response tag
element. For the most robust operation, include logic in the client application that handles
the absence of expected tag elements or the presence of unexpected ones as gracefully as
possible.

Spaces, Newlines, and Other White Space Characters

The JUNOScript API complies with the XML specification in ignoring spaces, newlines, and
other characters that represent white space. Client applications must not depend on leading,
trailing, or embedded white space when parsing the tag stream emitted by the JUNOScript
server. For more information about white space in XML documents, see the XML
specification at http://www.w3.org/TR/REC-xml.

JUNOScript Session Control e

General JUNOScript Conventions

XML Comments

XML comments can appear at any point in the tag stream emitted by the JUNOScript server.
Client applications must handle them gracefully but must not depend on their content. Client
applications also cannot use comments to convey information to the JUNOScript server,
because the server automatically discards any comments it receives.

XML comments are enclosed within the strings <!-- and -->, and cannot contain the string --
(two hyphens). For more details about comments, see the XML specification at
http://www.w3.0rg/TR/REC-xml.

The following is an example of an XML comment:

<l-- This is a comment. Please ignore it. -->

XML Processing Instructions

An XML PI contains information relevant to a particular protocol and has the following form:
<?Pl-name attributes?>

Some Pls emitted during a JUNOScript session include information that a client application
needs for correct operation. A prominent example is the <?xml?> tag element, which the
client application and JUNOScript server each emit at the beginning of every JUNOScript
session to specify which version of XML and which character encoding scheme they are
using. For more information, see “Emit the Initialization Pl and Tag” on page 19.

The JUNOScript server can also emit Pls that the client application does not need to interpret
(for example, Pls intended for the JUNOS CLI). If the client application does not understand a
PIl, it must treat the Pl like a comment rather than exiting or generating an error message.

Predefined Entity References

@ JUNOScript 5.5 API Guide

By XML convention, there are two contexts in which certain characters cannot appear in
their regular form:

B In the string that appears between opening and closing tags (the contents of the tag
element)

W |n the string value assigned to an attribute of an opening tag

When including a disallowed character in either context, client applications must substitute
the equivalent predefined entity reference, which is a string of characters that represents the
disallowed character. The JUNOScript server uses the same predefined entity references in its
response tag elements, so the client application must be able to convert them to actual
characters when processing response tag elements.

General JUNOScript Conventions

Table 2 summarizes the mapping between disallowed characters and predefined entity
references for strings that appear between the opening and closing tags of a tag element.

Table 2: Predefined Entity Reference Substitutions for Tag Content Values

Disallowed Character Predefined Entity Reference
& &

< <

> >

Table 3 summarizes the mapping between disallowed characters and predefined entity
references for attribute values.

Table 3: Predefined Entity Reference Substitutions for Attribute Values

Disallowed Character Predefined Entity Reference
& &
'
> >
< <
"

As an example, suppose that the following string is the value contained by the <condition>
tag element:

if (a<b && b>c) return "Peer’s dead"

Using the required predefined entity references, the <condition> tag element looks like this:
<condition>if (a<b && b>c) return "Peer’s dead"</condition>

Similarly, if the value for the <example> tag element’s heading attribute is

Peer’s "age" <> 40, the opening tag looks like this when the required predefined entity

references are used:

<example heading="Peer's "age" <> 40">

JUNOScript Session Control e

Start, Control, and End a JUNOScript Session

Start, Control, and End a JUNOScript Session

The JUNOScript server communicates with client applications within the context of a
JUNOScript session. The server and client explicitly establish a connection and session before
exchanging data, and close the session and connection when they are finished. The streams
of JUNOScript tag elements emitted by the JUNOScript server and a client application must
each constitute a well-formed XML document by obeying the structural rules defined in the
JUNOScript document type definition (DTD) for the kind of information they are exchanging.
The client application must emit tag elements in the required order and only in the allowed
contexts.

Client applications access the JUNOScript server using one of the protocols listed in
“Supported Access Protocols” on page 14. To authenticate with the JUNOScript server, they
use either a JUNOScript-specific mechanism or the protocol’s standard authentication
mechanism, depending on the protocol. After authentication, the JUNOScript server uses the
JUNOS login accounts and classes already configured on the router to determine whether a
client application is authorized to make each request.

See the following sections for information about establishing, using, and terminating a
connection and JUNOScript session:

W Supported Access Protocols on page 14

W Prerequisites for Establishing a Connection on page 15

Connect to the JUNOScript Server on page 18

Start the JUNOScript Session on page 19

Authenticate with the JUNOScript Server on page 23
B Exchange Tagged Data on page 25
B End the Session and Close the Connection on page 30

For an example of a complete JUNOScript session, see “Example of a JUNOScript Session” on
page 32.

Supported Access Protocols

The JUNOScript server accepts connections created using the access protocols listed in
Table 4, which also specifies the associated authentication mechanism.

Table 4: Supported Access Protocols and Authentication Mechanisms

@ JUNOScript 5.5 API Guide

Access Protocol Authentication Mechanism
clear-text, a JUNOScript-specific protocol for sending unencrypted text over a JUNOScript-specific
Transmission Control Protocol (TCP) connection

ssh (secure shell) Standard ssh

SSL (Secure Sockets Layer) JUNOScript-specific

telnet Standard telnet

Start, Control, and End a JUNOScript Session

The SSL and ssh protocols are preferred because they encrypt security information (such as a
password) before transmitting it across the network. The clear-text and telnet protocols do
not encrypt security information.

For information about the authentication prerequisites for each protocol, see “Prerequisites
for Establishing a Connection” on page 15. For authentication instructions, see “Authenticate
with the JUNOScript Server” on page 23.

Prerequisites for Establishing a Connection

Both the JUNOScript server and the client application must be able to access the software for
the access protocol that the client application uses to create a connection. The JUNOScript
server can access the protocols listed in “Supported Access Protocols” on page 14, because
the JUNOS Internet software distribution includes them. On most operating systems, client
applications can access the software for TCP (used by the JUNOScript-specific clear-text
protocol) and the telnet protocol as part of the standard distribution. For information about
obtaining ssh software for use by a client application, see http://www.ssh.com and
http://www.openssh.com. For information about obtaining SSL software, see
http://www.openssl.org.

For information about connection prerequisites, see the following sections:
W Prerequisites for clear-text Connections on page 15
B Prerequisites for ssh Connections on page 16
W Prerequisites for SSL Connections on page 16

B Prerequisites for telnet Connections on page 17

Prerequisites for clear-text Connections

If the client application uses the clear-text protocol to send unencrypted text directly over a
TCP connection without using any additional protocol (such as ssh, SSL, or telnet), perform
the following procedure to activate the xnm-clear-text service on port 3221 on the JUNOScript
server machine:

1. Enter CLI configuration mode on the JUNOScript server machine and issue the following
command:

[edit]
user@host# activate system services xnm-clear-text

2. Commit the configuration:

[edit]
user@host# commit

JUNOScript Session Control @

Start, Control, and End a JUNOScript Session

Prerequisites for ssh Connections
The ssh protocol uses public-private key technology. The ssh client software must be installed
on the machine where the client application runs. If the ssh private key is encrypted (as is
recommended for greater security), the ssh client must be able to access the passphrase used
to decrypt the key.
If the client application uses the JUNOScript Perl module described in “Write a Perl Client
Application” on page 75, no further action is necessary. As part of the Perl module
installation procedure, you install a prerequisites package that includes the necessary ssh
software.

If the client application does not use the JUNOScript Perl module, perform the following
procedures to enable it to establish ssh connections:

1. Install the ssh client on the machine where the client application runs.

2. If the private key is encrypted (as recommended), use one of the following methods to
make the associated passphrase available to the ssh client:

B Run the ssh-agent program to provide key management.
W Direct the ssh client to the file on the local disk that stores the passphrase.

B Include code in the client application that prompts a user for the passphrase.

Prerequisites for SSL Connections

The SSL protocol uses public-private key technology, which requires a paired private key and
authentication certificate. Perform the following procedure to enable a client application to
establish SSL connections:

1. Install the SSL client on the machine where the client application runs.
(Skip this step if the client application uses the JUNOScript Perl module described in
“Write a Perl Client Application” on page 75. As part of the Perl module installation

procedure, you install a prerequisites package that includes the necessary SSL software.)

2. Obtain an authentication certificate in Privacy Enhanced Mail (PEM) format, in one of
two ways:

W Request a certificate from a Certificate Authority; these agencies usually charge a
fee.

W [ssue the following openssl command to generate a self-signed certificate; for
information about obtaining the openssl software, see http://www.openssl.org.

The command writes the certificate and an unencrypted 1024-bit RSA private key
to the file called certificate-file.pem. The command appears here on two lines only
for legibility:

% openssl req -x509 -nodes -newkey rsa:1024 -keyout certificate-file.pem \
-out certificate-file.pem

@ JUNOScript 5.5 API Guide

Start, Control, and End a JUNOScript Session

3. Enter CLI configuration mode on the JUNOScript server machine and issue the following
commands to import the certificate. In the first command, substitute the desired
certificate name for the certificate-name variable. In the second command, for the
URL-or-path variable substitute the name of the file that contains the paired certificate
and private key, either as a URL or a pathname on the local disk:

[edit]
user@host# edit security certificates local certificate-name

[edit security certificates local certificate-name]
user@host# set load-key-file URL-or-path

The CLI expects the private key in the specified file (URL-or-path) to
be unencrypted. If the key is encrypted, the CLI prompts for the
passphrase associated with it, decrypts it, and stores the

unencrypted version.
Note

4. lIssue the following commands to activate the xnm-ssl service, which listens on port
3220. In the last command, substitute the same value for the certificate-name variable
as in Step 3:

[edit security certificates local certificate-name]
user@host# top

[edit]
user@host# edit system services

[edit system services]
user@host# activate xnm-ssl

[edit system services]
user@host# set xnm-ssl local-certificate certificate-name

5. Commit the configuration:
[edit system services]
user@host# commit
Prerequisites for telnet Connections
There are no prerequisites for enabling a client application to establish telnet connections,
other than ensuring that both the client application and the JUNOScript server can access the

telnet software. For a discussion, see “Prerequisites for Establishing a Connection” on
page 15.

JUNOScript Session Control @

Start, Control, and End a JUNOScript Session

Connect to the JUNOScript Server

A client application written in Perl can most efficiently establish a connection and open a
JUNOScript session by using the JUNOScript Perl module described in “Write a Perl Client
Application” on page 75. For more information, see that chapter.

For a client application that does not use the JUNOScript Perl module, first perform the
prerequisite procedures for the access protocol being used, as described in “Prerequisites for
Establishing a Connection” on page 15. The supported access protocols are listed in
“Supported Access Protocols” on page 14.

When the prerequisites are satisfied, the client application connects to the JUNOScript server
by opening a socket or other communications channel to the JUNOScript server machine
(router), invoking one of the remote-connection routines appropriate for the programming
language and access protocol that the application uses.

What the client application does next depends on which access protocol it is using:

W [f using the clear-text or SSL protocol, the client application does the following:

1. Emits initialization tag elements, as described in “Start the JUNOScript Session” on
page 19.

2. Authenticates with the JUNOScript server, as described in “Authenticate with the
JUNOScript Server” on page 23.

B [f using the ssh or telnet protocol, the client application does the following:
1. Uses the protocol’s built-in authentication mechanism to authenticate.
2. Issues the junoscript command to request that the JUNOScript server convert the
connection into a JUNOScript session. For a C programming language example, see

“Write a C Client Application” on page 83.

3. Emits initialization tag elements, as described in “Start the JUNOScript Session” on
page 19.

Connect to the JUNOScript Server from the CLI

@ JUNOScript 5.5 API Guide

The JUNOScript API is primarily intended for use by client applications; however, for testing
purposes you can establish an interactive JUNOScript session and type commands in a shell
window. To connect to the JUNOScript server from JUNOS CLI operational mode, issue the
junoscript command:

cli> junoscript

To begin a JUNOScript session over the connection, emit the initialization Pl and tag
described in “Start the JUNOScript Session” on page 19. You can then type sequences of tag
elements that represent operational and configuration operations, as described in
“Operational Requests” on page 35 and “Router Configuration” on page 39. To eliminate
typing errors, save complete tag element sequences in a file and use a cut-and-paste utility to
copy the sequences to the shell window.

Start, Control, and End a JUNOScript Session

When you close the connection to the JUNOScript server (for example, by
emitting the <request-end-session/> and </junoscript> tags), the router
completely closes your connection instead of returning you to the CLI
operational mode prompt.

Note
Similarly, the JUNOScript server completely closes your connection if there
are any typographical or syntax errors in the tag sequence you emit.

Start the JUNOScript Session

Each JUNOScript session begins with a handshake in which the JUNOScript server and the
client application specify the versions of XML and the JUNOScript API they are using. Each
party parses the version information emitted by the other, using it to determine whether they
can communicate successfully. The following sections describe how to start a JUNOScript
session:

B Emit the Initialization Pl and Tag on page 19

B Parse the Initialization Pl and Tag from the JUNOScript Server on page 21

m Verify Compatibility on page 22

W Supported Protocol Versions on page 23

Emit the Initialization Pl and Tag

When the JUNOScript session begins, the client application emits an <?xml?> Pl and an
opening <junoscript> tag, as described in the following sections.

Emit the <?xml?= PI
The client application begins by emitting an <?xml?> Pl with the following syntax:
<?xml version="version" encoding="encoding"?>

The PI attributes are as follows. For a list of the attribute values that are acceptable in the
current version of the JUNOScript API, see “Supported Protocol Versions” on page 23.

B version—The version of XML with which tag elements emitted by the client application
comply

W encoding—The standardized character set that the client application uses and can
understand

In the following example of a client application’s <?xml?> PI, the version="1.0" attribute
indicates that it is emitting tag elements that comply with the XML 1.0 specification. The
encoding="us-ascii" attribute indicates that the client application is using the 7-bit ASCII
character set standardized by the American National Standards Institute (ANSI). For more
information about ANSI standards, see http://www.ansi.org.

<?xml version="1.0" encoding="us-ascii"?>

JUNOScript Session Control @

Start, Control, and End a JUNOScript Session

Emit the Opening <<junoscript= Tag

@ JUNOScript 5.5 API Guide

The client application then emits its opening <junoscript> tag, which has the following
syntax:

<junoscript version="version" hostname="hostname" release="release-code">

The tag attributes are as follows. The version attribute is required, but the other attributes are
optional. For a list of the attribute values that are acceptable in the current version of the
JUNOScript API, see “Supported Protocol Versions” on page 23.

B version—(Required) The version of the JUNOScript API that the client application is

using.

hostname—The name of the machine on which the client application is running. The
information is used only when diagnosing problems. The JUNOScript API does not
include support for establishing trusted-host relationships or otherwise altering
JUNOScript server behavior depending on the client hostname.

release—The identifier of the JUNOS Internet software release for which the client
application is designed. It indicates that the client application can interoperate
successfully with a JUNOScript server designed to understand that version of the JUNOS
Internet software. In other words, it indicates that the client application emits request
tag elements corresponding to supported features of the indicated JUNOS Internet
software version, and knows how to parse response tag elements that correspond to
those features. If you do not include this attribute, the JUNOScript server assumes that
the client application can interoperate with its version of the JUNOS Internet software.
For more information, see “Verify Compatibility” on page 22.

For release-code, use the standard notation for JUNOS Internet software version
numbers. For example, the value 5.3R1 represents the initial version of JUNOS
Release 5.3.

In the following example of a client application’s opening <junoscript> tag, the
version="1.0" attribute indicates that it is using JUNOScript version 1.0. The
hostname="client1" attribute indicates that the client application is running on the machine
called clientl. The release="5.3R1" attribute indicates that the router is running the initial
version of JUNOS Release 5.3.

<junoscript version="1.0" hostname="client1" release="5.3R1">

Start, Control, and End a JUNOScript Session

Parse the Initialization Pl and Tag from the JUNOScript Server

When the JUNOScript session begins, the JUNOScript server emits an <?xml?> Pl and an
opening <junoscript> tag, as described in the following sections.

Parse the JUNOScript Server's <?xml?= PI
The syntax for the <?xmlI?> Pl is as follows:
<?xml version="version" encoding="encoding"?>

The PI attributes are as follows. For a list of the attribute values that are acceptable in the
current version of the JUNOScript API, see “Supported Protocol Versions” on page 23.

W version—The version of XML with which tag elements emitted by the JUNOScript server
comply

m encoding—The standardized character set that the JUNOScript server uses and can
understand

In the following example of a JUNOScript server’s <?xml?> PI, the version="1.0" attribute
indicates that the server is emitting tag elements that comply with the XML 1.0 specification.
The encoding="us-ascii" attribute indicates that the server is using the 7-bit ASCII character
set standardized by ANSI. For more information about ANSI standards, see
http://www.ansi.org.

<?xml version="1.0" encoding="us-ascii"'?>

Parse the JUNOScript Server’s Opening <<junoscript= Tag

The server then emits its opening <junoscript> tag, which has the following form (the tag
appears on multiple lines only for legibility):

<junoscript version="version" hostname="hostname" 0s="JUNOS" release="release-code"
xmins="namespace-URL" xmins:junos="namespace-URL"
xmins:xnm="namespace-URL">

The tag attributes are as follows.
B version—The version of the JUNOScript API that the JUNOScript server is using.
B hostname—The name of the router on which the JUNOScript server is running.

B 0s—The operating system of the router on which the JUNOScript server is running. The
value is always JUNOS.

B release—The identifier for the version of the JUNOS Internet software from which the
JUNOScript server is derived and is designed to understand. It is presumably in use on
the router where the JUNOScript server is running. The release-code uses the standard
notation for JUNOS Internet software version numbers. For example, the value 5.3R1
represents the initial version of JUNOS Release 5.3.

B xmins—The XML namespace for the tag elements enclosed by the <junoscript> tag
element that do not have a prefix on their names (that is, the default namespace for
JUNOScript tag elements). The value is a URL of the form
http://xml.juniper.net/xnm/version/xnm, where version is a string such as 1.1.

JUNOScript Session Control e

Start, Control, and End a JUNOScript Session

Verify Compatibility

@ JUNOScript 5.5 API Guide

B xmins:junos—The XML namespace for the tag elements enclosed by the <junoscript>
tag element that have the junos: prefix on their names. The value is a URL of the form
http://xml.juniper.net/junos/release-code/junos, where release-code is the standard
string that represents a release of the JUNOS software, such as 5.3R1 for the initial
release of version 5.3.

B xmins:xnm—The XML namespace for the JUNOScript tag elements enclosed by the
<junoscript> tag element that have the xnm: prefix on their names. The value is a URL of
the form http://xml.juniper.net/xnm/version/xnm, where version is a string such as
1.1.

In the following example of a JUNOScript server’s opening <junoscript> tag, the version
attribute indicates that the server is using JUNOScript version 1.0 and the hostname attribute
indicates that the router’s name is big-router. The os and release attributes indicate that the
router is running the initial version of JUNOS Release 5.3. The xmIns and xmIns:xnm
attributes indicate that the default namespace for JUNOScript tag elements and the
namespace for tag elements that have the xnm: prefix is
http://xml.juniper.net/xnm/1.1/xnm. The xmIns:junos attribute indicates that the
namespace for tag elements that have the junos: prefix is
http://xml.juniper.net/junos/5.3R1/junos. The tag appears on multiple lines only for
legibility.

<junoscript version="1.0" hostname="big-router" os="JUNOS" release="5.3R1"
xmins="http://xml.juniper.net/xnm/1.1/xnm"
xmins:junos="http://xml.juniper.net/junos/5.3R1/junos"
xmIns:xnm="http://xml.juniper.net/xnm/1.1/xnm">

Exchanging <?xml?> and <junoscript> tag elements enables a client application and the
JUNOScript server to determine if they are running different versions of a protocol. Different
versions are sometimes incompatible, and by JUNOScript convention the party running the
later version of a protocol determines how to handle any incompatibility. For fully automated
performance, include code in the client application that determines if its version of a protocol
is later than that of the JUNOScript server. Decide which of the following options is
appropriate when the application’s version of a protocol is more recent, and implement the
corresponding response:

W [gnore the version difference, and do not alter standard behavior to accommodate the
JUNOScript server’s version. A version difference does not always imply incompatibility,
so this is often a valid response.

B Alter standard behavior to provide backward compatibility to the JUNOScript server. If
the client application is running a later version of the JUNOS Internet software, for
example, it can choose to emit only tag elements that represent the software features
available in the JUNOScript server’s version of the JUNOS Internet software.

B End the JUNOScript session and terminate the connection. This is appropriate if you
decide that accommodating the JUNOScript server’s version of a protocol is not
practical.

Supported Protocol Versions

Start, Control, and End a JUNOScript Session

Table 5 lists the protocol versions supported by version 1.0 of the JUNOScript APl and
specifies the Pl or opening tag and attribute used to specify the information during

JUNOScript session initialization.

Table 5: Supported Protocol Versions

Protocol and Versions Pl or Tag Attribute
XML 1.0 <?xml?> version="1.0"
ANSI-standardized 7-bit ASCII character set <?xml?> encoding="us-ascii"

JUNOScript 1.0

<junoscript>

version="1.0"

JUNOS Release 5.3
JUNOS Release 5.4
JUNOS Release 5.5

<junoscript>

release="5.3Rx"
release="5.4Rx"
release="5.5Rx"

Authenticate with the JUNOScript Server

A client application that uses the clear-text or SSL protocol must now authenticate with the
JUNOScript server. (Applications that use the ssh or telnet protocol use the protocol’s built-in
authentication mechanism before emitting initialization tag elements, as described in

“Connect to the JUNOScript Server” on page 18.)

The client application that uses the clear-text or SSL protocol begins the authentication
process by emitting the <request-login> tag element within an <rpc> tag element. In the
<request-login> tag element, it encloses the <username> tag element to specify the name of
the JUNOS user account under which to establish the connection. The account must already
exist on the JUNOScript server machine. You can choose whether or not the application
provides the password for the account as part of the initial tag sequence:

W To provide the password along with the JUNOS account name, emit the following tag

sequence:

<rpc>
<request-login>

<username>JUNOS-account</username>

<challenge-response>password</challenge-response>

</request-login>
</rpc>

This tag sequence is appropriate if the application automates access to router
information and does not interact with users, or obtains the password from a user before
beginning the authentication process.

JUNOScript Session Control e

Start, Control, and End a JUNOScript Session

B To omit the password and specify only the JUNOS account name, emit the following tag
sequence:

<rpc>
<request-login>
<username>JUNOS-account</username>
</request-login>
</rpc>

This tag sequence is appropriate if the application does not obtain the password until the
authentication process has already begun. In this case, the JUNOScript server returns the
<challenge> tag element within an <rpc-reply> tag element to request the password
associated with the account. The tag element encloses the string Password: which the
client application can forward to the screen as a prompt for a user. The echo attribute on
the <challenge> tag element is set to the value no to specify that the password string
typed by the user does not echo on the screen. The tag sequence is as follows:

<rpc-reply xmins:junos="URL">
<challenge echo="no">Password:</challenge>
</rpc-reply>

The client application obtains the password and emits the following tag sequence to
forward it to the JUNOScript server:

<rpc>
<request-login>
<username>JUNOS-account</username>
<challenge-response>password</challenge-response>
</request-login>
</rpc>

After it receives the account name and password, the JUNOScript server emits the
<authentication-response> tag element to indicate whether the authentication attempt is
successful:

W [f the password is correct, the authentication attempt succeeds and the JUNOScript
server emits the following tag sequence:

<rpc-reply xmins:junos="URL">
<authentication-response>
<status>success</status>
<message>JUNOS-account</message>
</authentication-response>
</rpc-reply>

The JUNOS-account is the JUNOS account name under which the connection is
established. The JUNOScript session begins as described in “Start the JUNOScript
Session” on page 19.

@ JUNOScript 5.5 API Guide

Start, Control, and End a JUNOScript Session

W [f the password is not correct or the <request-login> tag element is otherwise
malformed, the authentication attempt fails and the JUNOScript server emits the
following tag sequence:

<rpc-reply xmins:junos="URL">
<authentication-response>
<status>fail</status>
<message>error-message</message>
</authentication-response>
</rpc-reply>

The error-message is a string explaining why the authentication attempt failed. The

JUNOScript server emits the <challenge> tag element up to two more times before rejecting
the authentication attempt and closing the connection.

Exchange Tagged Data
The session continues when the client application sends a request to the JUNOScript server.
The JUNOScript server does not emit any tag elements after session initialization, except in
response to the client application’s requests (or in the rare case that it needs to terminate the
JUNOScript session). The following sections describe the exchange of tagged data:
W Send a Request to the JUNOScript Server on page 25

W Parse the JUNOScript Server Response on page 27

Send a Request to the JUNOScript Server
To initiate a request to the JUNOScript server, emit the opening <rpc> tag, followed by one or
more tag elements that represent the particular request, and the closing </rpc> tag, in that
order. Enclose each request in a separate pair of opening <rpc> and closing </rpc> tags. For
an example of emitting an <rpc> tag element in the context of a complete JUNOScript
session, see “Example of a JUNOScript Session” on page 32.
See the following sections for further information:

B JUNOScript Request Classes on page 26

W Include Attributes in the Opening <<rpc= Tag on page 27

JUNOScript Session Control e

Start, Control, and End a JUNOScript Session

JUNOScript Request Classes
There are two classes of JUNOScript requests:

W Operational requests—Requests for information about router status, which correspond to
the JUNOS CLI commands listed in the JUNOS Internet Software Operational Mode
Command Reference. The JUNOScript API defines a specific request tag element for many
CLI commands. For example, the <get-interface-information> tag element corresponds
to the show interfaces command, and the <get-chassis-inventory> tag element requests
the same information as the show chassis hardware command.

The following sample request is for detailed information about the interface called
ge-2/3/0:

<rpC>
<get-interface-information>
<interface-name>ge-2/3/0</interface-name>
<detail/>
</get-interface-information>
</rpc>

For more information about requesting operational information, see “Operational
Requests” on page 35. For a complete list of mappings between tag elements and CLI
commands for the current version of the JUNOScript API, see the JUNOScript API
Reference.

W Configuration requests—Requests to change router configuration or for information
about the current configuration, either candidate or committed (the one currently in
active use on the router). The candidate and committed configurations diverge when
there are uncommitted changes to the candidate configuration.

Configuration requests correspond to the JUNOS CLI configuration statements described
in each of the JUNOS Internet software configuration guides. The JUNOScript API defines
a tag element for every container and leaf statement in the JUNOS configuration
hierarchy.

The following example requests the information about the [edit system login] level of
the current candidate configuration:

<rpc>
<get-configuration>
<configuration>
<system>
<login/>
</system>
</configuration>
</get-configuration>
</rpc>

For more information about router configuration, see “Router Configuration” on

page 39. For a summary of the available configuration tag elements, see the JUNOScript
API Reference.

@ JUNOScript 5.5 API Guide

Start, Control, and End a JUNOScript Session

Although operational and configuration requests conceptually belong to
separate classes, a JUNOScript session does not have distinct modes that
correspond to CLI operational and configuration modes. Each request tag
Note element is enclosed withiq its own <rpc> tag e_Iement, so a client application
can freely alternate operational and configuration requests.
The client application can send only one request tag element at a time to a
particular router, and must not send another request tag element until it
receives the closing </rpc-reply> tag that represents the end of the
JUNOScript server response to the current request.

Include Attributes in the Opening <<rpc= Tag

Optionally, a client application can include one or more attributes in the opening <rpc> tag
for each request. The client application can freely define attribute names, except as
described in the following note. The JUNOScript server echoes each attribute, unchanged, in
the opening <rpc-reply> tag in which it encloses its response. You can use this feature to
associate requests and responses by defining an attribute in each opening request tag that
assigns a unique identifier. The JUNOScript server echoes the attribute in its opening
<rpc-reply> tag, making it easy to map the response to the initiating request.

The xmins:junos attribute name is reserved. The JUNOScript server sets the
attribute to an appropriate value on the opening <rpc-reply> tag, so client
applications must not emit it on the opening <rpc> tag. For more

Not. information, see “The xmIns:junos Attribute” on page 28.
ote

Parse the JUNOScript Server Response
The JUNOScript server encloses its response to a client request in an <rpc-reply> tag element.
Client applications must include code for parsing the stream of response tags coming from
the JUNOScript server, either processing them as they arrive or storing them until the
response is complete. See the following sections for further information:
B The xmlns:junos Attribute on page 28

W JUNOScript Server Response Classes on page 28

B Use a Standard API to Parse Response Tag Elements on page 30

JUNOScript Session Control @

Start, Control, and End a JUNOScript Session

The xmlns:junos Attribute

The JUNOScript server includes the xmins:junos attribute on the opening <rpc-reply> tag to
define the XML namespace for the enclosed JUNOScript tag elements that have the junos:
prefix on their names. The namespace is a URL of the form
http://xml.juniper.net/junos/release-code/junos, where release-code is the standard string
that represents the release of the JUNOS Internet software that is running on the JUNOScript
server machine.

In the following example, the namespace corresponds to the initial release of version 5.3 of
the JUNOS Internet software:

<rpc-reply xmins:junos="http://xml.juniper.net/junos/5.3R1/junos”>

JUNOScript Server Response Classes
There are three classes of JUNOScript server responses:

W Operational responses—Responses to requests for information about router status. These
correspond to the output from JUNOS CLI operational commands as described in the
JUNOS Internet Software Operational Mode Command Reference. The JUNOScript API
defines response tag elements for all defined JUNOScript operational request tag
elements.

For example, the JUNOScript server returns the information requested by the
<get-interface-information> tag element in a response tag element called
<interface-information>, and the information requested by the <get-chassis-inventory>
tag element in a response tag element called <chassis-inventory>.

The opening tag for an operational response usually includes the xmins attribute to
define the XML namespace for the enclosed tag elements that do not have a prefix (such
as junos:) before their names. The namespace is a URL of the form
http://xml.juniper.net/junos/release-code/junos-category, where release-code is the
standard string that represents the release of the JUNOS Internet software that is running
on the JUNOScript server machine, and category represents the type of information.

The following sample response includes information about the interface called
ge-2/3/0. The namespace indicated by the xmins attribute contains interface
information for the initial release of version 5.3 of the JUNOS Internet software. (Note
that the opening <interface-information> tag element appears on two lines only for

legibility.)

<rpc-reply xmins:junos="URL">
<interface-information xmins="http://xml.juniper.net/junos/5.3R1/junos-interface">
<physical-interface>
<name>ge-2/3/0</name>
<!-- other data tag elements for the ge-2/3/0 interface -->
</physical-interface>
</interface-information>
</rpc-reply>

For more information about the contents of operational response tag elements, see
“Operational Requests” on page 35. For a summary of operational response tag
elements, see the JUNOScript API Reference.

@ JUNOScript 5.5 API Guide

Start, Control, and End a JUNOScript Session

B Configuration information responses—Responses to requests for information about the
router’s current configuration. The JUNOScript API defines a tag element for every
container and leaf statement in the JUNOS configuration hierarchy.

The following sample response includes the information at the [edit system login] level
of the configuration hierarchy. For brevity, the sample shows only one user defined at
this level.

<rpc-reply xmins:junos="URL">
<configuration>
<system>
<login>
<user>
<name>admin</name>
<full-name>Administrator</full-name>
<!-- other data tag elements for the admin user -->
</user>
</login>
</system>
</configuration>
</rpc-reply>

For more information about router configuration, see “Router Configuration” on
page 39. For a summary of the available configuration tag elements, see the JUNOScript
API Reference.

W Configuration change responses—Responses to requests to change router configuration.
For commit operations, the JUNOScript server encloses an explicit indicator of success
or failure within the <commit-results> tag element. For other operations, the JUNOScript
server indicates success by returning an opening <rpc-reply> and closing </rpc-reply>
tag with nothing between them, rather than emitting an explicit success indicator.

For more information about router configuration, see “Router Configuration” on
page 39. For a summary of the available configuration tag elements, see the JUNOScript
API Reference.

For an example of parsing the <rpc-reply> tag element in the context of a complete
JUNOScript session, see “Example of a JUNOScript Session” on page 32.

JUNOScript Session Control @

Start, Control, and End a JUNOScript Session

Use a Standard API to Parse Response Tag Elements

Client applications can handle incoming XML tag elements by feeding them to a parser that
implements a standard API such as the Document Object Model (DOM) or Simple API for
XML (SAX).

Routines in the DOM accept incoming XML and build a tag hierarchy in the client
application’s memory. There are also DOM routines for manipulating an existing hierarchy.
DOM implementations are available for several programming languages, including C, C+-+,
Perl, and Java. The DOM specification is available at
http://www.w3.0rg/TR/REC-DOM-Level-1. Additional information is available at
http://search.cpan.org/author/TIMATHER/XML-DOM-1.39/lib/XML/DOM.pm (part of the
Comprehensive Perl Archive Network [CPAN] Web site).

URL) is subject to frequent revision. Try substituting higher version numbers if

@ The version indicator in the URL for the DOM.pm file (1.39 in the preceding
the file cannot be found.

Note

One potential drawback with DOM is that it always builds a hierarchy of tag elements, which
can become very large. If a client application needs to handle only a subhierarchy at a time, it
can use a parser that implements SAX instead. SAX accepts XML and feeds the tag elements
directly to the client application, which must build its own tag hierarchy. For more
information about SAX, see http://sax.sourceforge.net.

End the Session and Close the Connection

@ JUNOScript 5.5 API Guide

When a client application is finished making requests, it ends the JUNOScript session by
emitting the empty <request-end-session/> tag within an <rpc> tag element. In response,
the JUNOScript server emits the <end-session/> tag enclosed in an <rpc-reply> tag element.
The client application waits to receive this reply before emitting its closing </junoscript> tag.
For an example of the exchange of closing tags, see “Example of a JUNOScript Session” on
page 32.

The client application can then close the ssh, SSL, or other connection to the JUNOScript
server machine. Client applications written in Perl can close the JUNOScript session and
connection by using the JUNOScript Perl module described in “Write a Perl Client
Application” on page 75. For more information, see that chapter.

Client applications that do not use the JUNOScript Perl module use the routine provided for
closing a connection in the standard library for their programming language.

Handle an Error Condition

Handle an Error Condition

If the JUNOScript server encounters an error condition that prevents it from processing the
current request, it emits an <xnm:error> tag element, which encloses child tag elements that
describe the nature of the error. Client applications must be prepared to receive and handle
an <xnm:error> tag element at any time. The information in any response tag elements
already received that are related to the current request might be incomplete. The client
application can include logic for deciding whether to discard or retain the information.

An error can occur while the server is performing any of the following operations, and the
server can send a different combination of child tag elements in each case:

W Processing a request submitted by a client application in a defined request tag element

B Processing a command string submitted by a client application in a <command> tag
element (discussed in “Requests and Responses without Defined JUNOScript Tag
Elements” on page 37)

B Opening, locking, committing, or closing a configuration as requested by a client
application (discussed in “Router Configuration” on page 39)

B Parsing a configuration file submitted by a client application in a <load-configuration>
tag element (discussed in “Change the Candidate Configuration” on page 56)

If the JUNOScript server encounters a less serious problem, it can emit an <xnm:warning> tag
element instead. The usual response for the client application in this case is to log the
warning or pass it to the user, but to continue parsing the server’s response.

For a description of the child tag elements that can appear within an <xnm:error> or
<xnm:warning> tag element to specify the nature of the problem, see the entries for
<xnm:error> and <xnm:warning> in the JUNOScript AP| Reference.

Halt a Request

To request that the JUNOScript server stop processing the current request, emit the empty
<abort/> tag. The JUNOScript server responds with the empty <abort-acknowledgment/>
tag. Depending on the operation being performed, response tag elements already sent by the
JUNOScript server for the halted request are possibly invalid. The client application can
include logic for deciding whether to discard or retain them as appropriate.

For more information about the <abort/> and <abort-acknowledgment/> tags, see their
entries in the JUNOScript API Reference.

JUNOScript Session Control e

Display CLI Output as JUNOScript Tag Elements

Display CLI Output as JUNOScript Tag Elements

To display the output from a JUNOS CLI command as JUNOScript tag elements rather than
the default formatted ASCII, pipe the command to the display xml command. The following
example shows the output from the show chassis hardware command issued on an M40
Internet backbone router that is running the initial version of JUNOS Release 5.3:

user@host> show chassis hardware | display xml

<rpc-reply xmins:junos="http://xml.juniper.net/junos/5.3R1/junos”>
<chassis-inventory xmins="http://xml.juniper.net/junos/5.3R1/junos-chassis">
<chassis junos:style="inventory">

<name>Chassis</name>

<serial-number>00118</serial-number>
<description>M40</description>

<chassis-module>

<name>Backplane</name>

<version>REV 06</version>
<part-number>710-000073</part-number>
<serial-number>AA2049</serial-number>

</chassis-module>

<chassis-module>

<name>Power Supply A</name>

</chassis-module>
</chassis>

</chassis-inventory>
</rpc-reply>

Example of a JUNOScript Session

@ JUNOScript 5.5 API Guide

This section describes the sequence of tag elements in a sample JUNOScript session. The
client application begins by establishing a connection to a JUNOScript server.

The two parties then exchange initialization Pls and tag elements, as shown in the following
example. Note that the JUNOScript server’s opening <junoscript> tag appears on multiple
lines for legibility only. The server does not actually insert a newline character into the list of
attributes. For a detailed discussion of the <?xml|?> PI and opening <junoscript> tag, see
“Start the JUNOScript Session” on page 19.

Client Application JUNOScript Server

<?xml version="1.0" encoding="us-ascii"?> <?xml version="1.0" encoding="us-ascii"?>

<junoscript version="1.0" release="5.3R1"> <junoscript version="1.0" hostname="router1"
0s="JUNOS" release="5.3R1"
xmIns="URL" xmlns:junos="URL"
xmins:xnm="URL">

T1001

Example of a JUNOScript Session

The client application now emits the <get-chassis-inventory> tag element to request
information about the router’s chassis hardware. The JUNOScript server returns the
requested information in the <chassis-inventory> tag element. In the following example, tag
elements appear indented and on separate lines for legibility only. Client applications do not
need to include newlines, spaces, or other white space characters in the tag stream they send
to the JUNOScript server, because the server automatically discards such characters. Also,
client applications can issue all tag elements that constitute a request within a single routine
such as the C-language write() routine, or can invoke a separate routine for each tag element
or group of tag elements.

Client Application JUNOScript Server
<rpc>
<get-chassis-inventory>
<detail/>
</get-chassis-inventory>
</rpc>

<rpc-reply xmins:junos="URL">
<chassis-inventory xmins="URL">
<chassis>
<name>Chassis</name>
<serial-number>1122</serial-number>
<description>M10</description>
<chassis-module>
<name>Midplane</name>
<!- - other child tags for the Midplane chassis module - ->
</chassis-module>
<!- - tags for other chassis modules - ->
</chassis>
</chassis-inventory>
</rpc-reply>

T1002

The client application then prepares to create a new privilege class called network-mgmt at
the [edit system login class] level of the configuration hierarchy. It begins by using the
<lock-configuration/> tag to prevent any other users or applications from altering the
candidate configuration at the same time. To confirm that the candidate configuration is
locked, the JUNOScript server returns an <rpc-reply> and an </rpc-reply> tag with nothing
between them.

Client Application JUNOScript Server
<rpC>

<lock-configuration/>
</rpc>

T1003

<rpc-reply xmins:junos="URL"></rpc-reply>

JUNOScript Session Control @

Example of a JUNOScript Session

The client application emits the tag elements that define the new network-mgmt privilege
class, commits them, and unlocks (and by implication closes) the configuration. As when it
opens the configuration, the JUNOScript server confirms successful receipt and closure of the
configuration only by returning an opening <rpc-reply> and closing </rpc-reply> tag with
nothing between them, not with a more explicit signal. It returns the <commit-results> tag
element to report the outcome of the commit operation. (You do not need to understand the
meaning of all tag elements at this point. For more information about configuring a router,
see “Router Configuration” on page 39.)

Client Application JUNOScript Server
<rpc>
<load-configuration>
<configuration>
<system>
<login>
<class>
<name>network-mgmt</name>
<permissions>configure</permissions>
<permissions>snmp</permissions>
<permissions>system</permissions>
</class>
</login>
</system>
</configuration>
</load-configuration>

</rpc>
<rpc-reply xmins:junos="URL"></rpc-reply>
<rpc>
<commit-configuration/>
</rpc>
<rpc-reply xmins:junos="URL">
<commit-results>
<routing-engine>
<name>re0</name>
<commit-success/>
</routing-engine>
</commit-results>
</rpc-reply>
<rpC> ~
<unlock-configuration/> 3
</rpc> 2

<rpc-reply xmins:junos="URL"></rpc-reply>

The client application closes the JUNOScript session:

Client Application JUNOScript Server
<rpC>
<request-end-session/>

</rpc>

<rpc-reply xmins:junos="URL">
<end-session/>

</rpc-reply>

</junoscript>

T1005

</junoscript>

@ JUNOScript 5.5 API Guide

Operational Requests

This chapter explains how to use the JUNOScript application programming interface (API) to
request information about router status. The JUNOScript request tag elements described here
correspond to JUNOS command-line interface (CLI) operational commands described in the
JUNOS Internet Software Operational Mode Command Reference. The JUNOScript API defines a
specific request tag element for most commands in the CLI show family of commands. For
example, the <get-interface-information> tag element corresponds to the show interfaces
command, and the <get-chassis-inventory> tag element requests the same information as
the show chassis command.

This chapter discusses the following topics:
B Request Operational Information on page 35
W Parse an Operational Response on page 37
B Requests and Responses without Defined JUNOScript Tag Elements on page 37

For information about using the JUNOScript API to request router configuration information,
see “Router Configuration” on page 39.

Request Operational Information

To request operational information from the JUNOScript server, first establish a connection to
it and open a JUNOScript session, as described in “Connect to the JUNOScript Server” on
page 18 and “Start the JUNOScript Session” on page 19.

Then emit operational request tag elements, each enclosed in an opening <rpc> and closing
</rpc> tag. Client applications can emit an unlimited number of operational request tag
elements during a JUNOScript session (one at a time). It can freely intermingle them with
configuration requests, which are described in “Router Configuration” on page 39.

Each operational request tag element corresponds to a JUNOS CLI command that has a
distinct function or returns a different kind of output. For a list of mappings between CLI
commands and operational request tag elements, see the JUNOScript API Reference.

The JUNOScript API defines separate Extensible Markup Language (XML) document type
definition (DTD) files for different JUNOS components. For instance, the DTD for interface
information is called junos-interface.dtd and the DTD for chassis information is called
junos-chassis.dtd. Each DTD constitutes a separate XML namespace, which means that
multiple DTDs can define a tag element with the same name but a distinct function. The
JUNOScript API Reference includes the text of the JUNOScript DTDs.
Operational Requests @

Request Operational Information

Client applications can emit all tag elements that constitute a request by invoking one
instance of a routine such as write(), or can invoke a separate instance of the routine for each
tag element or group of tag elements. The JUNOScript server ignores any newline characters,
spaces, or other white space characters in the tag stream.

After the client application finishes making requests, it can close the JUNOScript session and
terminate the connection, as described in “End the Session and Close the Connection” on
page 30.

JUNOS CLI commands take two main kinds of options, and there are matching child tag
elements in the corresponding operational request tag element. For a discussion and
example of each, see the following sections:

B Map Child Tag Elements to Options with Variable Values on page 36

B Map Child Tag Elements to Fixed-Form Options on page 37

Map Child Tag Elements to Options with Variable Values

@ JUNOScript 5.5 API Guide

Many JUNOS CLI commands have options that specify the name of the object that the
command affects or reports about. In some cases, the CLI does not precede the option name
with a fixed-form keyword, but XML convention requires that the JUNOScript API define a tag
element for each option. The tag element is most often called <name>, but other names are
sometimes used. To learn the names for the child tag elements of an operational request tag
element, consult the tag element’s entry in the appropriate DTD or in the JUNOScript API
Reference.

The following illustrates the mapping between CLI command and JUNOScript tag elements
for two CLI operational commands with variable-form options. In the show interfaces
command, t3-5/1/0:0 is the name of the interface. In the show bgp neighbor command,
10.168.1.222 is the IP address for the BGP peer of interest.

CLI Command JUNOScript Tags
show interfaces t3-5/1/0:0 <rpc>
<get-interface-information>
<interface-name>t3-5:1/0:0</interface-name>
</get-interface-information>
</rpc>
show bgp neighbor 10.168.1.122 <rpc>
<get-bgp-neighbor-information>
<neighbor-address>10.168.1.122</neighbor-address>
</get-bgp-neighbor-information>
</rpc>

T1006

Parse an Operational Response

Map Child Tag Elements to Fixed-Form Options

Some JUNOS CLI commands include options that have a fixed form, such as the brief and
detail strings, which specify the amount of detail to include in the output. The JUNOScript API

usually maps such an option to an empty tag element whose name matches the option
name.

The following illustrates the mapping between the CLI command and JUNOScript tag
elements for the show isis adjacency command, which has a fixed-form option called detail:

CLI Command JUNOScript Tags
show isis adjacency detail <rpc>
<get-isis-adjacency-information>
<detail/>
</get-isis-adjacency-information>
</rpc>

T1007

Parse an Operational Response

The JUNOScript server encloses its response to each operational request in a separate
<rpc-reply> tag element. For information about the conventions that client applications must
follow when interpreting a JUNOScript server response, see “General JUNOScript
Conventions” on page 9. For information about parsing a response tag element, see “Parse
the JUNOScript Server Response” on page 27.

Client applications must include code for accepting the tag stream and extracting the content
from tag elements. They can, for instance, feed them to a parser that implements a standard
API such as the Document Object Model (DOM) or Simple API for XML (SAX). For more
information, see “Use a Standard API to Parse Response Tag Elements” on page 30.

Requests and Responses without Defined JUNOScript Tag Elements

The JUNOScript API does not define a tag element for every JUNOS CLI command. Client
applications can still invoke the functionality of such commands by enclosing the actual CLI
command string in a <command> tag element. Like all request tag elements, the
<command> tag element must occur within an <rpc> tag element.

The following illustrates the use of the <command> tag element to issue the

request message command, for which the JUNOScript API does not define a tag element.
The line breaks in both the CLI command and within the <command> tag elements are for
legibility only. The client application should not include newlines or other extraneous white
space characters in the string within the <command> tag elements. Also, unlike most
examples in this manual, the following does not preserve a line-to-line correspondence
between the CLI command and the JUNOScript tag elements:

CLI Command JUNOScript Tags
request message all <rpc>
message "Statistics <command>
gathering in progress" request message all message "Statistics gathering in progress"
</command> g
</rpc> =

Operational Requests @

Requests and Responses without Defined JUNOScript Tag Elements

If the JUNOScript APl does not define a response tag element for the type of output requested
by a client application, the JUNOScript server encloses its response in an <output> tag
element. The tag element’s contents are usually one or more lines of formatted ASCII output
like that displayed by the JUNOS CLI on the computer screen.

The JUNOScript server might not support use of all CLI commands in the

<command> tag element. For details, see the JUNOS Internet software release

notes.
Caution The content and formatting of data within an <output> tag element are
subject to change, so client applications must not depend on them. Future
versions of the JUNOScript APl will define specific response tag elements
(rather than <output> tag elements) for more commands. Client applications
that rely on the content of <output> tag elements will not be able to interpret
the output from future versions of the JUNOScript server.

@ JUNOScript 5.5 API Guide

Router Configuration

This chapter explains how to use the JUNOScript application programming interface (API) to
change router configuration or to request information about the current configuration. The
JUNOScript tag elements described here correspond to JUNOS command-line interface (CLI)
configuration statements described in the JUNOS Internet software configuration guides.
This chapter discusses the following topics:

W Mapping between CLI Configuration Statements and JUNOScript Tag Elements on
page 40

B Same Tag Elements Used for Requests and Responses on page 46

B Overview of Router Configuration Procedures on page 47

B |ock the Candidate Configuration on page 48

B Request Configuration Information on page 49

B Change the Candidate Configuration on page 56

W \Verify the Syntactic Correctness of the Candidate Configuration on page 66
B Commit the Candidate Configuration on page 67

B Unlock the Candidate Configuration on page 71

Router Configuration @

Mapping between CLI Configuration Statements and JUNOScript Tag Elements

Mapping between CLI Configuration Statements and JUNOScript Tag Elements

The JUNOScript API defines a tag element for every container and leaf statement in the
JUNOS configuration hierarchy. At the top levels of the configuration hierarchy, there is
almost always a one-to-one mapping between tag elements and statements, and most tag
names match the configuration statement name. At deeper levels of the configuration
hierarchy, the mapping is sometimes less direct, because some CLI notational conventions
do not map directly to Extensible Markup Language (XML)-compliant tagging syntax. The
following sections describe the mapping between configuration statements and JUNOScript
tag elements:

B Tag Element Mappings for Top-Level (Container) Statements on page 40

B Tag Element Mappings for Leaf Statements on page 41

Tag Element Mappings for Identifiers on page 42

B Tag Element Mappings for Leaf Statements with Multiple Values on page 43

Tag Element Mappings for Multiple Options on One or More Lines on page 44

Tag Element Mapping for Comments about Configuration Statements on page 45

For some configuration statements, the notation used when typing the
statement at the CLI configuration-mode prompt differs from the notation
used in a configuration file. The same JUNOScript tag element maps to both

notational styles.
Note

Tag Element Mappings for Top-Level (Container) Statements

@ JUNOScript 5.5 API Guide

The <configuration> tag element is the top-level JUNOScript container tag element for
configuration statements, and corresponds to the CLI [edit] level. Most statements at the next
few levels of the configuration hierarchy are container statements, and the name of each
corresponding JUNOScript container tag element almost always matches the container
statement name.

The top-level <configuration-text> tag element also
corresponds to the CLI configuration mode’s [edit] level. It
encloses formatted ASCII configuration statements instead
of JUNOScript tag elements, and is not relevant to the
following discussion. For more information, see “Specify
Formatted ASCII or JUNOScript-Tagged Output” on
page 50.

Note

Mapping between CLI Configuration Statements and JUNOScript Tag Elements

The following depicts the mappings for two sample statements that begin at the top level of
the configuration hierarchy. Note how a closing brace in a CLI configuration statement
corresponds to a closing JUNOScript tag:

CLI Configuration Statements

system {
login {
...child statements...
}

}

protocols {
ospf {
...child statements...
}
}

Tag Element Mappings for Leaf Statements

JUNOScript Tags
<configuration>
<system>
<login>
<!- - child statements - ->
</login>
</system>
<protocols>
<ospf>
<!- - child statements - ->
</ospf>
</protocols>
</configuration>

T1009

A leaf statement is a CLI configuration statement that does not contain any other statements.
Most leaf statements define a value for one characteristic of a configuration object and have

the following form:

keyword value;

In general, the name of the JUNOScript tag element corresponding to a leaf statement is the
same as the keyword string. The string between the opening and closing JUNOScript tags is

the value.

The following depicts the mappings for two sample leaf statements that have a keyword and
a value: the message statement at the [edit system login] level and the preference statement

at the [edit protocols ospf] level:

CLI Configuration Statements

system {
login {
message "Authorized users only";
...other statements under login ...
}
}

protocols {
ospf {
preference 15;
...other statements under ospf ...
}
}

JUNOScript Tags
<configuration>
<system>
<login>
<message>Authorized users only</message>
<!- - other children of the <login> tag - ->
</login>
</system>
<protocols>
<ospf>
<preference>15</preference>
<!- - other children of the <ospf> tag - ->
</ospf>
</protocols>
</configuration>

T1010

Router Configuration e

Mapping between CLI Configuration Statements and JUNOScript Tag Elements

Some leaf statements consist of a fixed-form keyword only, without an associated
variable-form value. The JUNOScript API represents such statements with an empty tag. The
following example shows the mapping for the disable statement at the

[edit forwarding-options sampling] hierarchy level:

CLI Configuration Statement JUNOScript Tags
<configuration>
forwarding-options { <forwarding-options>
sampling { <sampling>
disable; <disable/>
...other statements under sampling ... <I- - other children of the <sampling> tag - ->
} </sampling>
} </forwarding-options>

T1011

</configuration>

Tag Element Mappings for Identifiers

@ JUNOScript 5.5 API Guide

At some hierarchy levels, the same kind of container object can appear multiple times. Each
instance of the object has a unique identifier to distinguish it from the other instances. In the
JUNOS CLI notation, the first statement in the set of statements for such an object consists of
a keyword and identifier of the following form:

keyword identifier {
... configuration statements for individual characteristics ...

}

The keyword is a fixed string that indicates the type of object being defined, and the identifier
is the unique name for this instance of the type. In the JUNOScript API, the tag element
corresponding to the keyword is a container tag element for child tag elements that represent
the object’s characteristics. The container tag element’s name generally matches the keyword
string.

The JUNOScript API differs from the CLI in its treatment of the identifier. Because the
JUNOScript API does not allow container tag elements to contain both other tag elements and
untagged character data such as an identifier name, the identifier must be enclosed in a tag
element of its own. Most frequently, identifier tag elements are called <name>. To verify the
identifier tag element name for an object, consult the object’s entry in the appropriate
document type definition (DTD) or in the JUNOScript API Reference.

Identifier tag elements also constitute an exception to the general XML convention that tag
elements at the same level of hierarchy can appear in any order; the identifier tag element
always occurs first within the container tag element.

The [edit protocols bgp group] statement is an example of a configuration statement with an
identifier. Each Border Gateway Protocol (BGP) group has an associated name (the identifier)
and can have other characteristics such as a type, peer autonomous system (AS) number, and
neighbor address.

Mapping between CLI Configuration Statements and JUNOScript Tag Elements

The following example illustrates the mapping between the CLI statements and JUNOScript
tag elements that create two BGP groups called G1 and G2. Notice how the JUNOScript
<name> tag element that encloses the identifier for each group (and for the identifier of the
neighbor within a group) does not have a counterpart in the CLI statements. For complete
information about changing router configuration, see “Change the Candidate Configuration”
on page 56.

CLI Configuration Statements JUNOScript Tags
<configuration>

protocols { <protocols>
bgp { <bgp>
group G1 { <group>
<name>Gl</name>
type external; <type>external</type>
peer-as 56; <peer-as>56</peer-as>
neighbor 10.0.0.1; <neighbor>

<name>10.0.0.1</name>
</neighbor>

</group>
group G2 { <group>
<name>G2</name>
type external; <type>external</type>
peer-as 57, <peer-as>57</peer-as>
neighbor 10.0.10.1; <neighbor>

<name>10.0.10.1</name>
</neighbor>
} </group>
} </bgp>
} </protocols>
</configuration>

T1012

Tag Element Mappings for Leaf Statements with Multiple Values

Some JUNOS CLI leaf statements accept multiple values, which can either be user-defined or
drawn from a set of predefined values. CLI notation uses square brackets to enclose all values
in a single statement, as in the following:

statement [valuel value2 value3 J;

The JUNOScript API instead encloses each value in its own tag element. The following
example illustrates the mapping between a CLI statement with multiple user-defined values
and the corresponding JUNOScript tag elements. The import statement imports two routing
policies defined elsewhere in the configuration. For complete information about changing
router configuration, see “Change the Candidate Configuration” on page 56.

CLI Configuration Statements JUNOScript Tags
<configuration>
protocols { <protocols>
bgp { <bgp>
group 23 { <group>
<name>23</name>
import [policyl policy2 ; <import>policyl</import>
<import>policy2</import>
} </group>
} </bgp>
} </protocols>
</configuration>

T1013

Router Configuration @

Mapping between CLI Configuration Statements and JUNOScript Tag Elements

The following example illustrates the same mapping for a CLI statement with multiple
predefined values. The permissions statement grants three predefined JUNOS permissions to

members of the user-accounts login class.

CLI Configuration Statements
system {
login {
class user-accounts {

permissions [configure admin control];

JUNOScript Tags
<configuration>
<system>
<login>
<class>
<name>user-accounts</name>
<permissions>configure</permissions>
<permissions>admin</permissions>
<permissions>control</permissions>
</class>
</login>
</system>
</configuration>

Tag Element Mappings for Multiple Options on One or More Lines

@ JUNOScript 5.5 API Guide

T1014

For some configuration objects, the configuration file specifies the value for more than one
option on a single line, usually for greater legibility and conciseness. In most such cases, the
first option identifies the object and does not have a keyword, but later options are paired
keywords and values. The JUNOScript API encloses each option in its own tag element.
Because the first option has no keyword in the CLI statement, the JUNOScript APl assigns a

name to its tag element.

The following example illustrates the mapping of a CLI configuration statement that places

multiple options on a single line to the corresponding JUNOScript tag elements. Notice that
the JUNOScript API defines a tag element for both options and assigns a name to the tag
element for the first option (10.0.0.1), which has no CLI keyword.

CLI Configuration Statements

system {
backup-router 10.0.01 destination 10.0.0.2;

JUNOScript Tags
<configuration>
<system>
<backup-router>
<address>10.0.0.1</address>
<destination>10.0.0.2</destination>
</backup-router>
</system>
</configuration>

T1015

Mapping between CLI Configuration Statements and JUNOScript Tag Elements

The configuration file entries for some configuration objects have multiple lines with more
than one option, and again the JUNOScript API defines a separate tag element for each
option. The following example illustrates the mappings for a sample

[edit protocols isis traceoptions] statement, which contains three statements, each with
multiple options:

CLI Configuration Statements JUNOScript Tags
<configuration>
protocols { <protocols>
isis { <isis>
traceoptions { <traceoptions>
file trace-file size 3m files 10 world-readable; <file>

<filename>trace-file</filename>
<size>3m</size>
<files>10</files>
<world-readable/>
</file>
flag route detalil; <flag>
<name>route</name>
<detail/>
</flag>
flag state receive; <flag>
<name>state</name>
<receive/>
</flag>
} </traceoptions>
} </isis>
} </protocols>
</configuration>

T1016

Tag Element Mapping for Comments about Configuration Statements

The JUNOS configuration database can include comments that describe statements in the
configuration. In CLI configuration mode, the annotate command specifies the comment to
associate with a statement at the current hierarchy level. Comments can also be inserted
directly into the ASCII version of the configuration file using a text editor. For more
information, see the JUNOS Internet Software Configuration Guide: Getting Started.

The JUNOScript API encloses comments about configuration statements in the
<junos:comment> tag element. (These comments are different than those described in “XML
Comments” on page 12, which are enclosed in the strings <!-- and --> and are automatically
discarded by the JUNOScript server.)

Place the <junos:comment> tag element immediately before the tag element that represents
the configuration statement to associate with the comment. (If the tag element for the
associated statement is omitted, the comment is not recorded in the configuration database.)
The comment text string should not include any linebreak characters, but should include one
of the two delimiters that indicate a comment in the configuration database: either the #
character before the comment or the paired strings /* before the comment and */ after it.

Router Configuration @

Same Tag Elements Used for Requests and Responses

The following example illustrates how to associate comments with the mappings for two
statements in a sample [edit protocols ospf area interface] hierarchy.

CLI Configuration Statements JUNOScript Tags
<configuration>
protocols { <protocols>
ospf { <ospf>
/* New backbone area */ <junos:comment>

/* New backbone area */
</junos:comment>

area 0.0.0.0 { <area>
<name>0.0.0.0</name>
Interface from router sj1 to router sj2 <junos:comment>

Interface from router sj1 to router sj2
</junos:comment>

interface so0-0/0/0 { <interface>

<name>s0-0/0/0</name>
hello-interval 5; <hello-interval>5</hello-interval>
} </interface>
} </area>
} </ospf>
} </protocols>
</configuration>

T1048

Same Tag Elements Used for Requests and Responses

@ JUNOScript 5.5 API Guide

The JUNOScript server encloses its response to a configuration request in an <rpc-reply> tag
element, just as for an operational request. Within the <rpc-reply> tag element, it by default
returns a JUNOScript-tagged response enclosed in a <configuration> tag element. (If the
client application requests a formatted ASCII response, the server instead encloses the
response in a <configuration-text> tag element. For more information, see “Specify
Formatted ASCII or JUNOScript-Tagged Output” on page 50.)

Enclosing every JUNOScript-tagged configuration response within a <configuration> tag
element contrasts with how the server encloses each different kind of operational response
in a tag element named for that type of response—for example, the <chassis-inventory> tag
element for chassis information or the <interface-information> tag element for interface
information.

The JUNOScript tag elements within the <configuration> tag element represent configuration
hierarchy levels, configuration objects, and object characteristics, always ordered from higher
to deeper levels of the hierarchy. When a client application loads a configuration, it emits the
same tag elements in the same order as the JUNOScript server uses when returning
configuration information. This consistent representation helps make handling configuration
information more straightforward. For instance, the client application can change router
configuration by requesting the current configuration, storing the JUNOScript server’s
response to a local memory buffer, making changes or applying transformations to the
buffered data, and reloading the altered configuration. Because the altered configuration is
based on the JUNOScript server’s response, it is certain to be syntactically correct. For more
information about changing router configuration, see “Change the Candidate Configuration”
on page 56.

Overview of Router Configuration Procedures

Similarly, when a client application requests information about a configuration hierarchy
level or object, it uses the same tag elements that the JUNOScript server will return in
response. To represent the hierarchy level or object about which it is requesting information,
the client application sends a complete stream of tag elements from the top of the
configuration hierarchy (represented by the <configuration> tag element) down to the
requested level or object. The innermost tag element, which represents the level or object, is
either empty or includes the identifier tag element only. The JUNOScript server’s response
includes the same stream of tag elements, but the tag element for the requested level or
object contains all the tag elements that represent the level’s child configuration elements or
object’s characteristics. For more information about requesting configuration information,
see “Request Configuration Information” on page 49.

One potential difference between the tag stream in the JUNOScript server’s response and
one emitted by a client application concerns the use of white space. By XML convention, the
JUNOScript server ignores white space in the tag stream it receives. In the stream that it
emits, however, the JUNOScript server includes newline characters and extra spaces between
tag elements. If a client application writes the response to a file, each tag element appears on
its own line, and child tag elements are indented from their parents, both of which enhance
readability for users. Client applications can ignore or discard the white space, particularly if
they do not write the tag elements to a file for later review. Client applications do not need to
include the white space in requests to the JUNOScript server.

Overview of Router Configuration Procedures

To read or change router configuration information, perform the following procedures, which
are described in the indicated sections:

1. Establish a connection to the JUNOScript server on the router, as described in “Connect
to the JUNOScript Server” on page 18.

2. Open a JUNOScript session, as described in “Start the JUNOScript Session” on page 19.
3. (Optional) Lock the current candidate configuration, as described in “Lock the Candidate
Configuration” on page 48. Locking the configuration prevents other users or

applications from changing it at the same time.

4. Request or change configuration information, as described in “Request Configuration
Information” on page 49 and “Change the Candidate Configuration” on page 56.

5. (Optional) Verify the syntactic correctness of the candidate configuration before
attempting to commit it, as described in “Verify the Syntactic Correctness of the
Candidate Configuration” on page 66.

6. Commit changes made to the candidate configuration (if appropriate), as described in
“Commit the Candidate Configuration” on page 67.

7. Unlock the current configuration if it is locked, as described in “Unlock the Candidate
Configuration” on page 71.

8. End the JUNOScript session and close the connection to the router, as described in “End
the Session and Close the Connection” on page 30.

Router Configuration @

Lock the Candidate Configuration

Lock the Candidate Configuration

@ JUNOScript 5.5 API Guide

Before reading or changing router configuration, a client application must establish a
connection to the JUNOScript server, as described in “Prerequisites for telnet Connections”
on page 17, and open a JUNOScript session, as described in “Start the JUNOScript Session”
on page 19.

The application can then emit the <lock-configuration/> tag enclosed in an <rpc> tag
element if it needs to prevent other users or applications from changing the candidate
configuration. If it is not important to block changes from other applications, the application
can begin requesting or changing configuration information immediately, as described in
“Request Configuration Information” on page 49 and “Change the Candidate Configuration”
on page 56.

Only one application can hold the lock on the candidate configuration at a time. Other users
and applications can still read the configuration while it is locked. The lock persists until
either the JUNOScript session ends or the client application emits the
<unlock-configuration/> tag, as described in “Unlock the Candidate Configuration” on

page 71.

If the JUNOScript server successfully locks the configuration, it returns an opening
<rpc-reply> and closing </rpc-reply> tag with nothing between them. If it cannot lock the
configuration, it returns an <xnm:error> tag element instead. Reasons for the failure include
the following:

B Another user or application has already locked the candidate configuration. The error
message reports the login identity of the user or application.

W The candidate configuration includes changes that have not yet been committed. To
commit the changes, see “Commit the Candidate Configuration” on page 67. To roll
back to a previous version of the configuration (and lose the uncommitted changes), see
“Roll Back to a Previous Configuration” on page 66.

In the following example, the client application emits the <lock-configuration/> tag after
opening the JUNOScript session and exchanging initialization information with the
JUNOScript server:

Client Application JUNOScript Server
<rpC>

<lock-configuration/>
</rpc>

T1003

<rpc-reply xmins:junos="URL"></rpc-reply>

Request Configuration Information

Automatically Discard Uncommitted Changes

By default, if a client application locks the configuration and does not commit it before the
JUNOScript session ends, any uncommitted changes that are made during the session are
retained in the candidate configuration. When the candidate configuration is subsequently
committed, the leftover changes become part of the committed configuration. This can lead
to unexpected results if the user or application performing the subsequent commit is
unaware of the leftover changes.

To discard uncommitted changes from the candidate configuration when the JUNOScript
session ends before the client application commits the configuration, enclose the <rollback>
tag element within the <lock-configuration> tag element and set the <rollback> tag element’s
value to automatic.

The following example illustrates the sequence of tag elements that causes an automatic
rollback:

Client Application JUNOScript Server
<|’pC>
<lock-configuration>
<rollback>automatic</rollback>
</lock-configuration>
</rpc>

T1017

<rpc-reply xmins:junos="URL"></rpc-reply>

Request Configuration Information

To request and parse configuration information, a client application emits the
<get-configuration> tag element enclosed in an <rpc> tag element. By setting optional
attributes on the opening <get-configuration> tag and enclosing the appropriate child tags
within the <get-configuration> tag element, the client application can request either the
candidate or the committed configuration, specify either JUNOScript-tagged or formatted
ASCII output, and request the entire configuration or just a section of it. The following
sections describe the procedures for requesting configuration information:

W Specify the Committed or Candidate Configuration on page 50

B Specify Formatted ASCII or JUNOScript-Tagged Output on page 50

B Request the Complete Configuration on page 52

W Request One Hierarchy Level on page 52

B Request a Single Configuration Object on page 53
If the client application has locked the candidate configuration as described in “Lock the
Candidate Configuration” on page 48, it should unlock it after making its read requests.
Other users and applications cannot change the configuration while it remains locked. For

more information, see “Unlock the Candidate Configuration” on page 71.

Client applications can also request an XML schema representation of the complete hierarchy
of JUNOS configuration statements, as described in the following section:

W Request an XML Schema for the Configuration Hierarchy on page 54

Router Configuration @

Request Configuration Information

Specify the Committed or Candidate Configuration

To request information from the current committed configuration—the one active on the
router—set the database attribute on the opening <get-configuration> tag to the value
committed. To request information from the current candidate configuration, either set the
database attribute to the value candidate or omit the database attribute completely (the
JUNOScript server returns information from the candidate configuration by default). In either
case, enclose the <get-configuration> tag element in an <rpc> tag element.

The database attribute can be combined with the format attribute (described in “Specify
Formatted ASCII or JUNOScript-Tagged Output” on page 50), and included when requesting
either the entire configuration or sections of it (as described in “Request the Complete
Configuration” on page 52, “Request One Hierarchy Level” on page 52, and “Request a
Single Configuration Object” on page 53).

The following example uses the database attribute to request the entire committed
configuration:

Client Application JUNOScript Server
<|’pC>
<get-configuration database="committed"/>
</rpc>
<rpc-reply xmins:junos="URL">
<configuration>
<version>5.3R1</version>
<system>
<host-name>big-router</host-name>
<!- - other children of the <system> tag - ->
</system>
<!- - other children of the <configuration> tag - ->
</configuration>
</rpc-reply>

T1018

Specify Formatted ASCII or JUNOScript-Tagged Output

To request that the JUNOScript server return configuration data as formatted ASCII text rather
than tagged with JUNOScript tag elements, set the format attribute on the opening
<get-configuration> tag to the value text. The server formats its response in the same way as
the JUNOS CLI show configuration command displays configuration data—it uses the newline
character, tabs, braces, and square brackets to indicate the hierarchical relationships between
configuration statements. The server encloses formatted ASCII configuration information in a
<configuration-text> tag element.

To request JUNOScript-tagged output, either set the format attribute to the value xml or omit
the format attribute completely (the JUNOScript server returns JUNOScript-tagged output by
default). The JUNOScript server encloses its output in a <configuration> tag element.

When the JUNOScript server encloses a JUNOScript tag element in the <undocumented> tag
element, the corresponding configuration element (hierarchy level or object) is not
documented in the JUNOS software configuration guides or officially supported by Juniper
Networks. Most often, the undocumented element is used for debugging purposes only by
Juniper Networks personnel. In rarer cases, the element is no longer supported or has been
moved to another area of the configuration hierarchy, but appears in the current location for
backward compatibility.

@ JUNOScript 5.5 API Guide

Request Configuration Information

Regardless of whether they are requesting JUNOScript tag elements or formatted ASCII, client
applications must use JUNOScript tag elements to represent the configuration element to
display. The format attribute controls the format of only the JUNOScript server’s output.
Enclose the tag elements that represent the configuration element to display in
<get-configuration> and <rpc> tag elements.

The format attribute can be combined with the database attribute (described in “Specify the
Committed or Candidate Configuration” on page 50), and included when requesting either
the entire configuration or sections of it (as described in “Request the Complete
Configuration” on page 52, “Request One Hierarchy Level” on page 52, and “Request a
Single Configuration Object” on page 53).

The following example uses the format attribute to request ASCII-formatted output at the
[edit policy-options] level of the current candidate configuration:

Client Application JUNOScript Server
<rpC>
<get-configuration format="text">
<configuration>
<policy-options/>
</configuration>
</get-configuration>
</rpc>
<rpc-reply xmins:junos="URL">
<configuration-text>
policy-options {
policy-statement load-balancing-policy {
from {
route-filter 192.168.10/24 orlonger;
route-filter 9.114/16 orlonger;
}
then {
load-balance per-packet;

}
}
}
</configuration-text>
</rpc-reply>

T1019

Router Configuration e

Request Configuration Information

Request the Complete Configuration

To request the entire current committed or candidate configuration, emit the empty
<get-configuration/> tag enclosed in an <rpc> tag element. If desired, include the database
or format attribute (or both), as described in “Specify the Committed or Candidate
Configuration” on page 50 and “Specify Formatted ASCII or JUNOScript-Tagged Output” on
page 50, respectively.

The following example illustrates the tag sequence for requesting the current candidate
configuration tagged with JUNOScript tag elements (the default):

Client Application JUNOScript Server

<rpC>
<get-configuration/>
</rpc>
<rpc-reply xmins:junos="URL">
<configuration>
<version>5.3R1</version>
<system>

<host-name>big-router</host-name>
<I- - other children of the <system> tag - ->
</system>
<!- - other children of the <configuration> tag - ->
</configuration>
</rpc-reply>

T1020

Request One Hierarchy Level

@ JUNOScript 5.5 API Guide

To request a single hierarchy level from the current committed or candidate configuration,
emit a <get-configuration> tag element and enclose the tag elements representing all levels of
the configuration hierarchy from the root (represented by the <configuration> tag element)
down to the level to display. Use an empty tag to represent the requested level. Enclose the
entire request in an <rpc> tag element.

If desired, include the database or format attribute (or both), as described in “Specify the
Committed or Candidate Configuration” on page 50 and “Specify Formatted ASCII or
JUNOScript-Tagged Output” on page 50, respectively. Note, however, that the format attribute
controls the format of only the JUNOScript server’s output. Client applications must emit
JUNOScript tag elements rather than formatted ASCII to represent which configuration level
to display.

Request Configuration Information

The following example illustrates the tag sequence when a client application requests the
contents of the [edit system login] level of the current candidate configuration. The output is
tagged with JUNOScript tag elements (the default):

Client Application
<rpC>
<get-configuration>
<configuration>
<system>
<login/>
</system>
</configuration>
</get-configuration>
</rpc>

JUNOScript Server

<rpc-reply xmins:junos="URL">
<configuration>
<system>
<login>
<user>
<name>barbara</name>
<full-name>Barbara Anderson</full-name>
<I- - other child tags for this user - ->
</user>
<!- - other children of the <login> tag - ->
</login>
</system>
</configuration>
</rpc-reply>

Request a Single Configuration Object

T1021

To request information about a single object at a specific level of the configuration hierarchy,
emit a <get-configuration> tag element enclosing the tag elements representing the entire

configuration hierarchy down to the object to display. To represent the requested object, emit
its container tag element and identifier tag element only, not any tag elements that represent
other characteristics. Enclose the entire request in an <rpc> tag element.

If desired, include the database or format attribute (or both), as described in “Specify the
Committed or Candidate Configuration” on page 50 and “Specify Formatted ASCII or
JUNOScript-Tagged Output” on page 50, respectively. Note, however, that the format attribute
controls the format of only the JUNOScript server’s output. Client applications must emit
JUNOScript tag elements rather than formatted ASCII to represent which configuration object

to display.

Router Configuration @

Request Configuration Information

The following example illustrates the tag sequence when a client application requests the
contents of one multicasting scope called local, which is at the

[edit routing-options multicast] hierarchy level. To specify the configuration object about
which to supply information, the client application emits the <name>local</name>
identifier tag element as the innermost tag element. The output is from the current candidate
configuration and is tagged with JUNOScript tag elements (the default).

Client Application
<|’pC>
<get-configuration>
<configuration>
<routing-options>
<multicast>
<scope>
<name>local</name>
</scope>
</multicast>
</routing-options>
</configuration>

JUNOScript Server

</get-configuration>
</rpc>
<rpc-reply xmins:junos="URL">
<configuration>
<routing-options>
<multicast>
<scope>

<name>local</name>
<prefix>239.255.0.0/16</prefix>
<interface>ip-f/p/0</interface>
</scope>
</multicast>
</routing-options>
</configuration>
</rpc-reply>

T1022

Request an XML Schema for the Configuration Hierarchy

@ JUNOScript 5.5 API Guide

To request an XML Schema-language representation of the entire JUNOS configuration
hierarchy, emit the <get-xnm-information> tag element enclosing the following two child tag
elements with the indicated values:

B <type>xml-schema</type>, which specifies that the JUNOScript server return the
configuration as an XML schema

B <namespace>junos-configuration</namespace>, which specifies that the JUNOScript
server return information about the JUNOS configuration

Enclose the entire request in an <rpc> tag element.

The JUNOScript server returns the XML schema enclosed in <rpc-reply> and <xsd:schema>
tag elements. The JUNOScript configuration schema represents the entire set of elements
that can be configured on a Juniper Networks router that is running the version of the JUNOS
software specified by the xmlIns:junos attribute in the opening <rpc-reply> tag. Client
applications can use the schema to validate the candidate or committed schema on a router,
or to discover which configuration statements are available in that version of the JUNOS
software.

Request Configuration Information

The JUNOScript configuration schema does not indicate which elements are actually
configured on the router where the JUNOScript server is running, or even that an element
can be configured on that type of router (some configuration statements are available only on
certain router types). To request the set of currently configured elements and their settings,
emit the <get-configuration> tag element instead, as described in other subsections of
“Request Configuration Information” on page 49.

Explaining the structure and notational conventions of the XML Schema language is beyond
the scope of this document. For a basic introduction to the XML Schema language, see the
primer available at http://www.w3.org/TR/xmlIschema-0. The primer references the more
formal specifications for the XML Schema language if you need additional details.

The following examples illustrate the tag sequence with which a client application requests
the JUNOScript configuration schema. In the JUNOScript server’s reply, the first two
<xsd:element> statements define the schema for the <undocumented> and <comment>
JUNOScript tag elements, which can be enclosed in most other container tag elements
defined in the schema (container tag elements are defined as <xsd:complexType>).

Client Application JUNOScript Server
<rpc>
<get-xnm-information>
<type>
xml-schema
</type>
<namespace>
junos-configuration
</namespace>
</getxnm-information>
</rpc>
<rpc-reply xmins:junos="URL">
<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema" \
elementFormDefault="qualified">
<xsd:element name="undocumented">
<xsd:complexType>
<xsd:sequence>
<xsd:any namespace="##any" processContents="skip"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="comment">
<xsd:complexType>
<xsd:sequence>
<xsd:any namespace="##any" processContents="skip"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

T1023

Router Configuration @

Change the Candidate Configuration

The third <xsd:element> statement in the schema defines the JUNOScript <configuration>
tag element. The fourth <xsd:element> statement begins the definition of the <system> tag
element, which corresponds to the [edit system] level of the JUNOScript configuration
hierarchy. The statements corresponding to other hierarchy levels are omitted for brevity.

Client Application JUNOScript Server

</xsd:element>
<xsd:element name="configuration">
<xsd:complexType>
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="undocumented"/>
<xsd:element ref="comment"/>
<xsd:element name="system" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="undocumented"/>
<xsd:element ref="comment"/>
<!- - child elements of <system> appear here - ->
</xsd:choice >
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<I- - statements for other hierarchy levels appear here - ->
</xsd:choice >
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</rpc-reply>

T1024

Change the Candidate Configuration

To change the current candidate configuration, emit the <load-configuration> tag element
enclosed in an <rpc> tag element. Specify which configuration element (hierarchy level or
configuration object) to change in one of two ways:

B By setting the empty <load-configuration/> tag’s url attribute to the pathname of a file
that resides on the router and contains the set of configuration statements to load. For
example, the following tag identifies the file /tmp/new.conf as the file to load:

<load-configuration url="/tmp/new.conf’/>
B By enclosing within the <load-configuration> tag element the tag elements that
represent the configuration statements to load. Include tag elements for the complete
statement path down to the element to change.
To confirm that it successfully loaded the configuration as the new candidate configuration,

the JUNOScript server returns <rpc-reply> and </rpc-reply> tags with nothing between them.
If it cannot load the configuration, it emits an <xnm:error> tag element instead.

@ JUNOScript 5.5 API Guide

Change the Candidate Configuration

Client applications can provide the configuration information to load either as formatted
ASCII or tagged with JUNOScript tag elements. They can also specify the manner in which the
JUNOScript server loads the configuration. For instructions, see the following sections:

W Provide Configuration Data as Formatted ASCII or JUNOScript Tag Elements on page 57
B Merge Statements into the Current Configuration on page 57

W Replace (Override) the Entire Current Configuration on page 59

B Replace a Configuration Element on page 59

B Delete a Configuration Element on page 60

B Change a Configuration Element’s Activation State on page 63

W Replace a Configuration Element and Change Its Activation State Simultaneously on
page 64

B Roll Back to a Previous Configuration on page 66

Provide Configuration Data as Formatted ASCII or JUNOScript Tag Elements

Client applications can use one of two formats when providing configuration data to be
loaded into the candidate configuration:

B [f providing formatted ASCII (the standard format used by the JUNOS CLI
show configuration command to display configuration data), set the format attribute on
the opening <load-configuration> tag to the value text. Enclose the configuration data in
a <configuration-text> tag element rather than a <configuration> tag element. To
indicate the hierarchical relationships between the configuration statements to be
loaded, format them using the newline character, tabs and other white space, braces,
and square brackets.

m |f providing JUNOScript-tagged information, either set the format attribute on the
opening <load-configuration> tag to the value xml or omit the format attribute
completely (the JUNOScript server expects JUNOScript-tagged output by default).
Enclose the configuration information in a <configuration> tag element.

Whichever form of configuration information is provided, enclose the <load-configuration>
tag element in an <rpc> tag element. The format attribute can be combined with the action
attribute described in “Merge Statements into the Current Configuration” on page 57,
“Replace (Override) the Entire Current Configuration” on page 59, and “Replace a
Configuration Element” on page 59. For examples of the possible combinations, see those
sections.

Merge Statements into the Current Configuration
To combine the statements in the loaded configuration with the current candidate
configuration, set the action attribute on the opening <load-configuration> tag to the value

merge. This is also the default behavior if there is no action attribute.

<load-configuration action="merge">

Router Configuration @

Change the Candidate Configuration

Merging configuration statements is useful when adding a new configuration object or
subhierarchy to the configuration. If statements in the loaded configuration conflict with
statements in the current candidate configuration, the loaded statements replace the current
ones.

As noted in “Provide Configuration Data as Formatted ASCII or JUNOScript Tag Elements” on
page 57, client applications can specify the configuration information to load either as
formatted ASCII or tagged with JUNOScript tag elements. In the former case, set the format
attribute on the opening <load-configuration> tag to text.

The following example merges information for a new interface called so-3/0/0 into the
[edit interfaces] level of the current candidate configuration. The information is provided in
JUNOScript-tagged format (the default).

Client Application JUNOScript Server
<|’pC>
<load-configuration action="merge">
<configuration>
<interfaces>
<interface>
<name>s0-3/0/0</name>
<unit>
<name>0</name>
<family>
<inet>
<address>
<name>10.0.0.1/8</name>
</address>
</inet>
</family>
</unit>
</interface>
</interfaces>
</configuration>
</load-configuration>
</rpc>

T1025

<rpc-reply xmins:junos="URL"></rpc-reply>

The following example uses formatted ASCII to define the same new interface:

Client Application JUNOScript Server
<rpC>
<load-configuration action="merge" format="text">
<configuration-text>
interfaces {
s0-3/0/0 {
unit O {
family inet {
address 10.0.0.1/8;
}
}
}

</configuration-text>
</load-configuration>
</rpc>

T1026

<rpc-reply xmins:junos="URL"></rpc-reply>

@ JUNOScript 5.5 API Guide

Change the Candidate Configuration

Replace (Override) the Entire Current Configuration

To discard the entire current candidate configuration and replace it with the loaded
configuration, set the action attribute on the opening <load-configuration> tag to the value
override:

<load-configuration action="override">
In the following example, the contents of the file /tmp/new.conf (which resides on the router)

replaces the entire current candidate configuration. The information in the file is tagged with
JUNOScript tag elements (the default), so the format attribute is not set.

Client Application JUNOScript Server
<rpc>

<load-configuration action="override" url="/tmp/new.conf"/>
</rpc>

~
o
o
—
i

<rpc-reply xmins:junos="URL"></rpc-reply>

Replace a Configuration Element

To replace a configuration element (hierarchy level or configuration object) in the current
configuration, set the action attribute on the opening <load-configuration> tag to the value
replace:

<load-configuration action="replace">

If using JUNOScript tag elements to define the loaded configuration, include the tag elements
that represent the entire hierarchy down to the configuration element you want to replace. In
the opening tag of the container tag element that represents the configuration element, set
the replace attribute to the value replace. Within the container tag element, include all its
child tag elements.

If using formatted ASCII to define the loaded configuration, include the statements that
represent the entire hierarchy down to the element you want to replace. Place the replace:
statement above the element’s parent statement. Within the container tag elements for the
element, include all relevant child statements.

Router Configuration @

Change the Candidate Configuration

The following example grants new permissions for the object named operator at the
[edit system login class] hierarchy level. The information is provided in JUNOScript-tagged
format (the default).

Client Application JUNOScript Server
<rpc>
<load-configuration action="replace">
<configuration>
<system>
<login>
<class replace="replace">
<name>operator</name>
<permissions>configure</permissions>
<permissions>admin-control</permissions>
</class>
</login>
</system>
</configuration>
</load-configuration> ©
</rpc> §
<rpc-reply xmins:junos="URL"></rpc-reply>+

The following example uses formatted ASCII to make the same change:

Client Application JUNOScript Server
<I’pC>
<load-configuration action="replace" format="text">
<configuration-text>
system {
login {
replace:
class operator {
permissions [configure admin-control];
}
}
}

</configuration-text>
</load-configuration>
</rpc>

T1029

<rpc-reply xmins:junos="URL"></rpc-reply>

Delete a Configuration Element

The client application can use the delete attribute to delete several kinds of configuration
elements:

W Delete a Hierarchy Level on page 61
B Delete a Configuration Object on page 61
W Delete One or More Values from a Leaf Statement on page 62

W Delete a Fixed-Form Option on page 63

@ JUNOScript 5.5 API Guide

Change the Candidate Configuration

The JUNOS CLI does not provide a delete: statement that

marks formatted ASCII configuration data for deletion.

Client applications must use JUNOScript tag elements to
Note represent the data to delete.

Delete a Hierarchy Level

To remove a hierarchy level from the configuration hierarchy, set the delete attribute to the
value delete on the empty tag that represents the level. Emit a <load-configuration> tag
element enclosing the tag elements representing the entire statement path down to the level
to remove.

The following example removes the [edit protocols ospf] level of the current candidate
configuration:

Client Application JUNOScript Server
<|’pC>
<load-configuration>
<configuration>
<protocols>
<ospf delete="delete"/>
</protocols>
</configuration>
</load-configuration>
</rpc>

T1030

<rpc-reply xmins:junos="URL"></rpc-reply>

Delete a Configuration Object

To delete a single configuration object, set the delete attribute to the value delete on the
container tag element for that object. Inside the container tag element, include the identifier
tag element only, not any tag elements that represent other characteristics. Emit a
<load-configuration> tag enclosing the tag elements representing the entire statement path
down to the object to remove.

The delete attribute is placed on the opening tag of the
containing tag element rather than on the identifier tag
element (in the following example, on the <user> tag
element rather than the <name> tag element). The
presence of the identifier tag element results in the
removal of the specified object rather than the removal of
the entire hierarchy level represented by the containing tag
element (in the example, the user account barbara is

removed rather than the entire [edit system login user]
level).

Note

Router Configuration e

Change the Candidate Configuration

The following example removes the account for user object barbara from the
[edit system login user] level of the current candidate configuration:

Client Application JUNOScript Server
<I’pC>
<load-configuration>
<configuration>
<system>
<login>
<user delete="delete">
<name>barbara</name>
</user>
</login>
</system>
</configuration>
</load-configuration>
</rpc>

T1031

<rpc-reply xmins:junos="URL"></rpc-reply>

Delete One or More Values from a Leaf Statement

To delete one or more values from a leaf statement that accepts multiple values, set the
delete attribute to the value delete on the opening tag for each value. Do not include tag
elements that represent values to be retained. Emit a <load-configuration> tag element
enclosing the tag elements representing the entire statement path down to the leaf statement
from which to remove values.

The following example removes two of the permissions granted to the user-accounts login
class:

Client Application JUNOScript Server
<rpc>
<load-configuration>
<configuration>
<system>
<login>
<class>
<name>user-accounts</name>
<permissions delete="delete">configure</permissions>
<permissions delete="delete">control</permissions>
</class>
</login>
</system>
</configuration>
</load-configuration>
</rpc>

T1032

<rpc-reply xmins:junos="URL"></rpc-reply>

@ JUNOScript 5.5 API Guide

Change the Candidate Configuration

Delete a Fixed-Form Option

To delete a fixed-form option, set the delete attribute to the value delete on the tag element
for the option. Emit a <load-configuration> tag element enclosing the tag elements that
represent the entire statement path down to the option to remove.

The following example removes the fixed-form disable option at the
[edit forwarding-options sampling] hierarchy level:

Client Application JUNOScript Server
<I’pC>
<load-configuration>
<configuration>
<forwarding-options>
<sampling>
<disable delete="delete"/>
</sampling>

</forwarding-options>
</configuration>
</load-configuration>
</rpc>

T1033

<rpc-reply xmins:junos="URL"></rpc-reply>

Change a Configuration Element’s Activation State

When a configuration element (hierarchy level or configuration object) is deactivated in the
configuration hierarchy, it remains in the candidate configuration but is not activated in the
actual configuration when the candidate is later committed.

To use JUNOScript tag elements to define which element to deactivate, either omit the format
attribute from the opening <load-configuration> tag or set it to the value xml. Emit the
opening <configuration> tag next, and then the tag elements representing the entire
statement path down to the element to deactivate. On the tag element that represents the
configuration element itself, set the inactive attribute to the value inactive:

W To represent a hierarchy level, emit an empty tag.

W To represent an object, emit the object’s container tag element. Inside the container tag
element enclose only the identifier tag element for the object, not any tag elements that
represent other object attributes.

Conclude the tag stream with closing </configuration> and </load-configuration> tags.

To use formatted ASCII to define the configuration element to deactivate, set the format
attribute on the opening <load-configuration> tag to the value text. Emit the opening
<configuration-text> tag element next, followed by formatted ASCII for all statements in the
path down to the element you want to deactivate. Place the inactive: statement immediately
before the statement for the element. Conclude the tag stream with closing
</configuration-text> and </load-configuration> tags.

Router Configuration @

Change the Candidate Configuration

To reactivate a configuration element that was previously deactivated, use the preceding
instructions and substitute the string active for inactive. Specifically, when loading
JUNOScript tag elements, set the active attribute to the value active on the opening tag for
the element to activate. When loading formatted ASCII statements, place the active:
statement immediately before the statements to reactivate. With both kinds of notation, the
reactivated element is activated in the committed configuration the next time the candidate
configuration is committed.

The following example deactivates the [edit protocols isis] level of the current candidate
configuration:

Client Application JUNOScript Server
<rpc>
<load-configuration>
<configuration>
<protocols>
<isis inactive="inactive"/>
</protocols>
</configuration>
</load-configuration>
</rpc>

T1034

<rpc-reply xmins:junos="URL"></rpc-reply>

Replace a Configuration Element and Change Its Activation State
Simultaneously

To replace a configuration element (hierarchy level or configuration object) completely while
simultaneously deactivating or reactivating it, set the action attribute on the opening
<load-configuration> tag to the value replace. Within the container tag elements for the
configuration element you are replacing, include the tag elements or statements that
represent all the element’s characteristics, not just its identifier tag element or statement.
Finally, combine attributes or statements as follows:

W [f using JUNOScript tag elements to replace and deactivate an element, set two attributes
on the opening tag of its container tag element: the replace attribute to the value replace
and the inactive attribute to the value inactive. If using formatted ASCII, place the
replace: statement above the statements to replace and the inactive: statement directly
in front of the first statement.

B [f using JUNOScript tag elements to replace and reactivate an element, set two attributes
on the opening tag of its container tag element: the replace attribute to the value replace
and the active attribute to the value active. If using formatted ASCII, place the replace:
statement above the statements to replace and the active: statement directly in front of
the first statement.

For more information about completely reconfiguring an element, see “Replace a
Configuration Element” on page 59.

@ JUNOScript 5.5 API Guide

Change the Candidate Configuration

The following example replaces the information in the [edit protocols bgp] level of the
current candidate configuration for the group called G3, but also deactivates the group so
that it is not activated in the actual configuration when the candidate is committed:

Client Application JUNOScript Server
<|’pC>
<load-configuration action="replace">
<configuration>
<protocols>
<bgp>
<group replace="replace" inactive="inactive'>

<name>G3</name>

<type>external</type>

<peer-as>58</peer-as>

<neighbor>

<name>10.0.20.1</name>
</neighbor>
</group>
</bgp>
</protocols>
</configuration>
</load-configuration>

</rpc> 8
2

<rpc-reply xmins:junos="URL"></rpc-reply>

The following example uses formatted ASCII to make the same change:

Client Application JUNOScript Server
<rpc>
<load-configuration action="replace" format="text">
<configuration-text>
protocols {
bgp {
replace:
inactive: group G3 {
type external;
peer-as 58;
neighbor 10.0.20.1;
}
}

</configuration-text>
</load-configuration>
</rpc> 3
<rpc-reply xmins:junos="URL"></rpc-reply> F

Router Configuration @

Verify the Syntactic Correctness of the Candidate Configuration

Roll Back to a Previous Configuration

The router stores a copy of the most recently committed configuration and up to nine
previous configurations. To replace the current candidate configuration with a previous one,
set the rollback attribute on the empty <load-configuration/> tag to the numerical index for
the appropriate previous configuration. The index for the most recently committed
configuration is O (zero), and the index for the oldest possible stored configuration is 9.

In the following example, the current candidate configuration is replaced by the most
recently committed one:

Client Application JUNOScript Server
<rpc>

<load-configuration rollback="0"/>
</rpc>

T1037

<rpc-reply xmins:junos="URL"></rpc-reply>

Verify the Syntactic Correctness of the Candidate Configuration

@ JUNOScript 5.5 API Guide

Before committing the candidate configuration, you might want to confirm that it is
syntactically correct. To verify the candidate configuration without actually committing it,
enclose the empty <check/> tag in a <commit-configuration> tag element.

The JUNOScript server encloses its response in <rpc-reply>, <commit-results>, and
<routing-engine> tag elements. If the syntax check succeeds, the <routing-engine> tag
element encloses the <commit-check-success/> tag and the <name> tag element, which
reports the name of the Routing Engine on which the check succeeded (either re0O or rel). If
the syntax check fails, an <xnm:error> tag element encloses tag elements that describe the
error.

The following example illustrates the tag sequence when the candidate configuration on
Routing Engine 0 is syntactically correct:

Client Application JUNOScript Server
<rpc>
<commit-configuration>
<check/>
</commit-configuration>
</rpc>
<rpc-reply xmins:junos="URL">
<commit-results>
<routing-engine>
<name>re0</name>
<commit-check-success/>
</routing-engine>
</commit-results>
</rpc-reply>

T1043

Commit the Candidate Configuration

Commit the Candidate Configuration

To commit the current candidate configuration so that it becomes the active configuration on
the router, emit the empty <commit-configuration/> tag enclosed in an <rpc> tag element. To
avoid inadvertently committing changes made by other users or applications, lock the
candidate configuration before changing it and emit the <commit-configuration/> tag while
the configuration is still locked. (For instructions on locking and changing the candidate
configuration, see “Lock the Candidate Configuration” on page 48 and “Change the
Candidate Configuration” on page 56.) After committing the configuration, unlock it as
described in “Unlock the Candidate Configuration” on page 71.

The JUNOScript server encloses its response in <rpc-reply>, <commit-results>, and
<routing-engine> tag elements. If the commit operation succeeds, the <routing-engine> tag
element encloses the <commit-success/> tag and the <name> tag element, which reports
the name of the Routing Engine on which the commit operation succeeded (either re0 or
rel). If the commit operation fails, an <xnm:error> tag element encloses tag elements that
describe the error. The most common causes of failure are semantic or syntactic errors in the
candidate configuration.

The following example illustrates the tag sequence when a client application commits the
candidate configuration on Routing Engine O:

Client Application JUNOScript Server
<|’pC>
<commit-configuration/>
</rpc>
<rpc-reply xmins:junos="URL">
<commit-results>
<routing-engine>
<name>re0</name>
<commit-success/>
</routing-engine>
</commit-results>
</rpc-reply>

T1044

For information about using JUNOScript for other commit operations, see the following
sections:

B Commit and Synchronize the Configuration on Both Routing Engines on page 68
B Commit the Configuration at a Specified Time on page 69
B Commit a Configuration but Require Confirmation on page 70

For more detailed information about commit operations, including a discussion of the

interaction among different commit operations, see the JUNOS Internet Software
Configuration Guide: Getting Started.

Router Configuration @

Commit the Candidate Configuration

Commit and Synchronize the Configuration on Both Routing Engines

@ JUNOScript 5.5 API Guide

To copy the candidate configuration stored on one of a router’s Routing Engines to the other
Routing Engine, verify the candidate’s syntactic correctness, and commit it on both Routing
Engines, emit the empty <synchronize/> tag enclosed in <commit-configuration> and <rpc>
tag elements. This operation is valid only on a router with more than one Routing Engine
installed (the JUNOScript server returns an error if there is only one Routing Engine). Also,
the apply groups re0 and rel must already be defined on the router. For more information,
see the JUNOS Internet Software Configuration Guide: Getting Started.

The JUNOScript server encloses its response in <rpc-reply> and <commit-results> tag
elements. It emits a separate <routing-engine> tag element for each operation on each
Routing Engine:

B |f the syntax check succeeds on a Routing Engine, the <routing-engine> tag element
encloses the <commit-check-success/> tag and the <name> tag element, which reports
the name of the Routing Engine on which the check succeeded (either reO or rel). If the
configuration is incorrect, an <xnm:error> tag element encloses tag elements that
describe the error.

W [f the commit operation succeeds on a Routing Engine, the <routing-engine> tag element
encloses the <commit-success/> tag and the <name> tag element, which reports the
name of the Routing Engine on which the commit operation succeeded. If the commit
operation fails, an <xnm:error> tag element encloses tag elements that describe the
error. The most common causes of failure are semantic or syntactic errors in the
candidate configuration.

The following example illustrates the tag sequence when a client application commits and
synchronizes the candidate configuration:

Client Application JUNOScript Server
<|’pC>
<commit-configuration>
<synchronize/>
</commit-configuration>
</rpc>
<rpc-reply xmins:junos="URL">
<commit-results>
<routing-engine>
<name>re0</name>
<commit-check-success/>
</routing-engine>
<routing-engine>
<name>rel</name>
<commit-check-success/>
</routing-engine>
<routing-engine>
<name>re0</name>
<commit-success/>
</routing-engine>
<routing-engine>
<name>rel</name>
<commit-success/>
</routing-engine>
</commit-results>
</rpc-reply>

T1046

Commit the Candidate Configuration

Commit the Configuration at a Specified Time

To commit the candidate configuration at a specified time in the future, emit the <at-time>
tag element enclosed in <commit-configuration> and <rpc> tag elements. The configuration
is checked immediately for syntactic correctness. If the syntax check succeeds, the
JUNOScript server returns <rpc-reply>, <commit-results>, and <routing-engine> tag elements
enclosing the <commit-check-success/> tag and the <name> tag element, which reports the
name of the Routing Engine on which the check succeeded (either reO or rel).

The configuration is scheduled for commit at the specified time. The JUNOScript server does
not emit additional tag elements when the commit operation is actually performed.

If the configuration is not syntactically correct, an <xnm:error> tag element encloses tag
elements that describe the error. The commit operation is not scheduled.

To indicate when to perform the commit operation, include one of three types of values in
the <at-time> tag element:

W The string reboot, to commit the configuration the next time the router reboots.

B A time value of the form hh:mm [:ss] (hours, minutes, and optionally seconds), to
commit the configuration at the specified time, which must be in the future at the time
the client application emits the <commit-configuration> tag element but before 11:59:59
PM on the day it emits the tag element. As an example, if the <at-time> tag element
specifies 02:00 AM and the application emits the <commit-configuration> tag element at
2:10 AM, the commit will not take place at all because the scheduled time has already
passed for that day. The commit is not scheduled for 2:00 AM the next day.

Use 24-hour time; for example, 04:30:00 means 4:30:00 AM and 20:00 means 8:00
PM. The time is interpreted with respect to the clock and time zone settings on the
router.

B A date and time value of the form yyyy-mm-dd hh:mm [:ss] (year, month, date, hours,
minutes, and optionally seconds), to commit the configuration at the specified day and
time, which must be after the <commit-configuration> tag element is emitted. Use
24-hour time. For example, 2003-08-21 12:30:00 means 12:30 PM on August 21, 2003.
The time is interpreted with respect to the clock and time zone settings on the router.

The following example illustrates the tag sequence when a client application schedules a
commit operation for 10:00 PM on the current day:

Client Application JUNOScript Server
<rpc>
<commit-configuration>
<at-time>22:00</at-time>
</commit-configuration>
</rpc>
<rpc-reply xmins:junos="URL">
<commit-results>
<routing-engine>
<name>rel</name>
<commit-check-success/>
</routing-engine>
</commit-results>
</rpc-reply>

T1047

Router Configuration @

Commit the Candidate Configuration

Commit a Configuration but Require Confirmation

@ JUNOScript 5.5 API Guide

To commit the current candidate configuration but require an explicit confirmation for the
commit to become permanent, emit the empty <confirmed/> tag enclosed in
<commit-configuration> and <rpc> tag elements. If the commit is not confirmed within a
certain amount of time (10 minutes by default), the JUNOScript server automatically rolls
back to the previously committed configuration. To specify a different number of minutes for
the rollback deadline, also emit the <confirm-timeout> tag element enclosing a positive
integer value.

The JUNOScript server encloses its response in <rpc-reply>, <commit-results>, and
<routing-engine> tag elements. If the commit operation succeeds, the <routing-engine> tag
element encloses the <commit-success/> tag and the <name> tag element, which reports
the name of the Routing Engine on which the commit operation succeeded (either re0O or
rel). If the commit operation fails, an <xnm:error> tag element encloses tag elements that
describe the error. The most common causes of failure are semantic or syntactic errors in the
candidate configuration.

The <confirmed/> tag is useful for verifying that a configuration change works correctly and
does not prevent management access to the router. If the change prevents access or causes
other errors, the automatic rollback to the previous configuration restores access after the
rollback deadline passes.

To delay the rollback to a time later than the current rollback deadline, emit the
<confirmed/> tag again (enclosed in a <commit-configuration> tag element) before the
deadline passes. Optionally, include the <confirm-timeout> tag element to specify how long
to delay the next rollback; omit that tag element to delay the rollback by the default 10
minutes. The client application can delay the rollback indefinitely by emitting the
<confirmed/> tag repeatedly in this way.

To cancel the rollback completely (and commit a configuration permanently), emit one of the
following tag sequences before the rollback deadline passes:

B The empty <commit-configuration/> tag enclosed in an <rpc> tag element. The rollback
is cancelled and the current candidate configuration is committed immediately, as
described in “Commit the Candidate Configuration” on page 67. If the candidate
configuration is still the same as the temporarily committed configuration, this
effectively recommits the temporarily committed configuration.

B The <commit-synchronize/> tag enclosed in <commit-configuration> and <rpc> tag
elements. The rollback is cancelled and the current candidate configuration is checked
and committed immediately on both Routing Engines, as described in “Commit and
Synchronize the Configuration on Both Routing Engines” on page 68. If a confirmed
commit operation has been performed on both Routing Engines, then emitting the
<commit-synchronize/> tag cancels the rollback on both.

B The <commit-at> tag element enclosed in <commit-configuration> and <rpc> tag
elements. The rollback is cancelled and the configuration is checked immediately for
syntactic correctness, then committed at the scheduled time, as described in “Commit
the Configuration at a Specified Time” on page 69.

Unlock the Candidate Configuration

The following example illustrates the tag sequence when a client application commits the
candidate configuration on Routing Engine 1 with a rollback deadline of 20 minutes:

Client Application JUNOScript Server
<rpC>
<commit-configuration>
<confirmed/>
<confirm-timeout>20</confirm-timeout>
</commit-configuration>
</rpc>
<rpc-reply xmins:junos="URL">
<commit-results>
<routing-engine>
<name>rel</name>
<commit-success/>
</routing-engine>
</commit-results>
</rpc-reply>

T1045

Unlock the Candidate Configuration

To unlock the candidate configuration after changing it, committing it, or both, emit the
empty <unlock-configuration/> tag enclosed in an <rpc> tag element. Other applications and
users cannot change the candidate configuration until the client application releases the lock.
To confirm that it has successfully unlocked the configuration, the JUNOScript server returns
an opening <rpc-reply> and closing </rpc-reply> tag with nothing between them. If it cannot
unlock the configuration, it returns an <xnm:error> tag element instead.

The following example illustrates the tag sequence with which the client application unlocks
the configuration:

Client Application JUNOScript Server
<I’pC>

<unlock-configuration/>
</rpc>

T1041

<rpc-reply xmins:junos="URL"></rpc-reply>

Router Configuration e

Unlock the Candidate Configuration

@ JUNOScript 5.5 API Guide

Write JUNOScript Client Applications

W Write a Perl Client Application on page 75

® Write a C Client Application on page 83

JUNOScript 5.5 API Guide

Write a Perl Client Application

Juniper Networks provides a Perl module, called JUNOS::Device, to help you more quickly
and easily develop custom Perl scripts for configuring and monitoring routers. The module
implements an object that client applications can use to communicate with the JUNOScript
server on a router. Accompanying the JUNOS::Device module are several sample Perl scripts,
which illustrate how to use the module in scripts that perform various functions.
This chapter discusses the following topics:

B Download the Module and Sample Scripts on page 75

B Module and Sample Scripts on page 75

B Request and Load Configuration Data on page 76

B Mapping of Perl Queries to JUNOScript Tag Elements on page 77

Download the Module and Sample Scripts

To download, uncompress, and unpack the compressed tar-format file that contains the
JUNOS::Device module and sample scripts, perform the following steps:

1. Access the Juniper Networks Customer Support Center Web page at
http://www.juniper.net/support.

2. Click on the link labeled “JUNOScript API Software.”
3. For installation instructions, click on the link to the README.html file in the “JUNOScript

Perl Module and Sample Scripts” section, and see the “Installation” section of the
README.html file.

Module and Sample Scripts

The JUNOScript Perl distribution uses the directory structure for Perl modules that is used by
the Comprehensive Perl Archive Network (http://www.cpan.org). There is a lib directory for
the JUNOS::Device module and its supporting files, and an examples directory for the sample
scripts.

The JUNOS::Device Perl module implements an object that client applications can use to
communicate with a JUNOScript server; all the sample scripts use it.

Write a Perl Client Application @

Request and Load Configuration Data

The sample scripts illustrate how to perform the following functions:

B diagnose_bgp.pl—Illustrates how to write scripts to monitor router status and diagnose

problems. The sample script extracts and displays information about a router’s
unestablished Border Gateway Protocol (BGP) peers from the full set of BGP
configuration data.

get_chassis_inventory.pl—lIllustrates how to use one of the predefined Perl JUNOScript
queries to request information from a router. The sample script invokes the
get_chassis_inventory query, which requests the same information as the
<get-chassis-inventory> JUNOScript tag element and the JUNOS command-line interface
(CLI) show chassis hardware command. For a list of all Perl queries available in this
release of JUNOScript, see Table 6 on page 77.

load_configuration.pl—Illustrates how to change the router configuration by loading a
file of configuration data that is formatted with JUNOScript tag elements. The
distribution includes two sample files, set_login_user_foo.xml and
set_login_class_bar.xml, but you can specify another JUNOScript configuration file on
the command line.

The following sample scripts are used together to illustrate how to store and retrieve
JUNOScript (or any Extensible Markup Language [XML]) data in a relational database. The
scripts create and manipulate MySQL tables, but illustrate data manipulation techniques that
apply to any relational database:

B get_config.pl—Illustrates how to retrieve router configuration information.

B make_tables.pl—Generates a set of Structure Query Language (SQL) statements for

creating relational database tables and inserting data extracted from a specified XML file.

B pop_tables.pl—Populates existing relational database tables with data extracted from a

specified XML file.

W unpop_tables.pl—Transforms data stored in a relational database table into XML and

writes it to a file.

For instructions on running the scripts, see the README or README.html file included in the
JUNOScript Perl distribution.

Request and Load Configuration Data

The get_config.pl script described in “Module and Sample Scripts” on page 75 illustrates how
to request JUNOScript configuration data. The load_configuration.pl script illustrates how to
load configuration data, and includes logic for handling and recovering from errors. They are
appropriate bases for custom scripts that perform these functions.

@ JUNOScript 5.5 API Guide

Mapping of Perl Queries to JUNOScript Tag Elements

Mapping of Perl Queries to JUNOScript Tag Elements

The sample scripts described in “Module and Sample Scripts” on page 75 invoke only a small
number of the predefined JUNOScript Perl queries that client applications can use. Table 6
maps all the Perl queries available in the current version of JUNOScript to the corresponding
JUNOScript response tag element and JUNOS CLI command. Each query has the same name
as the corresponding JUNOScript request tag element (to derive the request tag name,
replace each underscore with a hyphen and enclose the string in angle brackets).

For more information about JUNOScript request and response tag elements, see the
JUNOScript APl Reference.

Table 6: Mapping of Perl/Java Methods to JUNOScript Tag Elements

Method Response Tag Element CLI Command
clear_helper_statistics_information NONE clear helper statistics
clear_ipv6_nd_information <ipv6-modify-nd> clear ipv6 neighbors
file_compare NONE file compare
file_copy NONE file copy

file_delete NONE file delete

file_list NONE file list

file_rename NONE file rename

file_show NONE file show

get_accounting_profile_information

<accounting-profile-information>

show accounting

get_accounting_record_information

<accounting-record-information>

show accounting records

get_alarm_information

<alarm-information>

show chassis alarms

get_bgp_group_information

<bgp-group-information>

show bgp group

get_bgp_neighbor_information

<bgp-information>

show bgp neighbor

get_bgp_summary_information

<bgp-information>

show bgp summary

get_chassis_inventory

<chassis-inventory>

show chassis hardware

get_cos_classifier_information

<cos-classifier-information>

show class-of-service classifier

get_cos_classifier_table_information

<cos-classifier-table-information>

show class-of-service forwarding-table
classifier

get_cos_classifier_table_map_information

<cos-classifier-table-map-information>

show class-of-service forwarding-table
classifier mapping

get_cos_code_point_map_information

<cos-code-point-map-information>

show class-of-service code-point-aliases

get_cos_drop_profile_information

<cos-drop-profile-information>

show class-of-service drop-profile

get_cos_fabric_scheduler_map_information

<cos-fabric-scheduler-map-information>

show class-of-service fabric scheduler-map

get_cos_forwarding_class_information

<cos-forwarding-class-information>

show class-of-service forwarding-class

get_cos_fwtab_fabric_scheduler_map_information

<cos-fwtab-fabric-scheduler-map-information>

show class-of-service forwarding-table fabric
scheduler-map

get_cos_information

<cos-information>

show class-of-service

get_cos_interface_map_information

<cos-interface-information>

show class-of-service interface

get_cos_policer_table_map_information

<cos-policer-table-map-information>

show class-of-service forwarding-table policer

get_cos_red_information

<cos-red-information>

show class-of-service forwarding-table
drop-profile

get_cos_rewrite_information

<cos-rewrite-information>

show class-of-service rewrite-rule

Write a Perl Client Application

Mapping of Perl Queries to JUNOScript Tag Elements

Method

Response Tag Element

CLI Command

get_cos_rewrite_table_information

<cos-rewrite-table-information>

show class-of-service forwarding-table
rewrite-rule

get_cos_rewrite_table_map_information

<cos-rewrite-table-map-information>

show class-of-service forwarding-table
rewrite-rule mapping

get_cos_scheduler_map_information

<cos-scheduler-map-information>

show class-of-service scheduler-map

get_cos_scheduler_map_table_information

<cos-scheduler-map-table-information>

show class-of-service forwarding-table
scheduler-map

get_cos_shaper_table_map_information

<cos-shaper-table-map-information>

show class-of-service forwarding-table shaper

get_cos_table_information

<cos-table-information>

show class-of-service forwarding-table

get_destination_class_statistics

<destination-class-statistics>

show interfaces destination-class

get_environment_information

<environment-information>

show chassis environment

get_fabric_queue_information

<fabric-queue-information>

show class-of-service fabric statistics

get_feb_information

<sch-information>

show chassis feb

get_firewall_information

<firewall-information>

show firewall

get_firewall_log_information

<firewall-log-information>

show firewall log

get_firmware_information

<firmware-information>

show chassis firmware

get_forwarding_table_information

<forwarding-table-information>

show route forwarding-table

get_fpc_information

<fpc-information>

show chassis fpc

get_ggsn_apn_statistics_information

<apn-statistics-information>

show services ggsn statistics apn

get_ggsn_gtp_prime_statistics_information

<gtp-prime-statistics-information>

show services ggsn statistics gtp-prime

get_ggsn_gtp_statistics_information

<gtp-statistics-information>

show services ggsn statistics gtp

get_ggsn_imsi_trace

<call-trace-information>

show services ggsn trace imsi

get_ggsn_imsi_user_information

<mobile-user-information>

show services ggsn statistics imsi

get_ggsn_interface_information

<ggsn-interface-information>

show services ggsn status

get_ggsn_msisdn_trace

<call-trace-information>

show services ggsn trace msisdn

get_ggsn_sgsn_statistics_information

<sgsn-statistics-information>

show services ggsn statistics sgsn

get_ggsn_statistics

<ggsn-statistics>

show services ggsn statistics

get_ggsn_trace

<call-trace-information>

show services ggsn trace all

get_helper_statistics_information

<helper-statistics-information>

show helper statistics

get_ike_security_associations_information

<ike-security-associations-information>

show ike security-associations

get_instance_information

<instance-information>

show route instance

get_interface_filter_information

<interface-filter-information>

show interfaces filters

get_interface_information

<interface-information>

show interfaces

get_interface_policer_information

<interface-policer-information>

show interfaces policers

get_interface_queue_information

<interface-information>

show interfaces queue

get_ipv6_nd_information

<ipv6-nd-information>

show ipv6 neighbors

get_ipv6_ra_information

<ipv6-ra-information>

show ipv6 router-advertisement

get_isis_adjacency_information

<isis-adjacency-information>

show isis adjacency

get_isis_database_information

<isis-database-information>

show isis database

get_isis_hostname_information

<isis-hostname-information>

show isis hostname

get_isis_interface_information

<isis-interface-information>

show isis interface

get_isis_route_information

<isis-route-information>

show isis route

get_isis_spf_information

<isis-spf-information>

show isis spf

get_isis_statistics_information

<isis-statistics-information>

show isis statistics

get_I2ckt_connection_information

<l|2ckt-connection-information>

show I2circuit connections

JUNOScript 5.5 API Guide

Mapping of Perl Queries to JUNOScript Tag Elements

Method

Response Tag Element

CLI Command

get_l2vpn_connection_information

<l2vpn-connection-information>

show 12vpn connections

get_Idp_database_information

<ldp-database-information>

show Idp database

get_ldp_interface_information

<ldp-interface-information>

show Idp interface

get_ldp_neighbor_information

<ldp-neighbor-information>

show Idp neighbor

get_Idp_path_information

<ldp-path-information>

show Idp path

get_Idp_route_information

<ldp-route-information>

show Idp route

get_ldp_session_information

<ldp-session-information>

show Idp session

get_Idp_statistics_information

<ldp-statistics-information>

show Idp statistics

get_Idp_traffic_statistics_information

<|dp-traffic-statistics-information>

show Idp traffic-statistics

get_Im_information

<Im-information>

show link-management

get_Im_peer_information

<Im-peer-information>

show link-management peer

get_Im_routing_information

<Im-information>

show link-management routing

get_Im_routing_peer_information

<Im-peer-information>

show link-management routing peer

get_Im_routing_te_link_information

<Im-te-link-information>

show link-management routing te-link

get_Im_te_link_information

<Im-te-link-information>

show link-management te-link

get_logging_service_client_history_information

<logging-service-history-information>

show services logging history client

get_logging_service_files_information

<logging-service-files-information>

show services logging logfiles

get_logging_service_history_information

<logging-service-history-information>

show services logging history

get_mpls_admin_group_information

<mpls-admin-group-information>

show mpls admin-groups

get_mpls_cspf_information

<mpls-cspf-information>

show mpls cspf

get_mpls_interface_information

<mpls-interface-information>

show mpls interface

get_mpls_Isp_information

<mpls-Isp-information>

show mpls Isp

get_mpls_path_information

<mpls-path-information>

show mpls path

get_ospf3_database_information

<ospf3-database-information>

show ospf3 database

get_ospf3_interface_information

<ospf3-interface-information>

show ospf3 interface

get_ospf3_io_statistics_information

<ospf3-io-statistics-information>

show ospf3 io-statistics

get_ospf3_log_information

<ospf3-log-information>

show ospf3 log

get_ospf3_neighbor_information

<ospf3-neighbor-information>

show ospf3 neighbor

get_ospf3_route_information

<ospf3-route-information>

show ospf3 route

get_ospf3_statistics_information

<ospf3-statistics-information>

show ospf3 statistics

get_ospf_database_information

<ospf-database-information>

show ospf database

get_ospf_interface_information

<ospf-interface-information>

show ospf interface

get_ospf_io_statistics_information

<ospf-io-statistics-information>

show ospf io-statistics

get_ospf_log_information

<ospf-log-information>

show ospf log

get_ospf_neighbor_information

<ospf-neighbor-information>

show ospf neighbor

get_ospf_route_information

<ospf-route-information>

show ospf route

get_ospf_statistics_information

<ospf-statistics-information>

show ospf statistics

get_passive_monitoring_error_information

<passive-monitoring-error-information>

show passive-monitoring error

get_passive_monitoring_flow_information

<passive-monitoring-flow-information>

show passive-monitoring flow

get_passive_monitoring_information

<passive-monitoring-information>

show passive-monitoring

get_passive_monitoring_memory_information

<passive-monitoring-memory-information>

show passive-monitoring memory

get_passive_monitoring_status_information

<passive-monitoring-status-information>

show passive-monitoring status

get_passive_monitoring_usage_information

<passive-monitoring-usage-information>

show passive-monitoring usage

Write a Perl Client Application

Mapping of Perl Queries to JUNOScript Tag Elements

Method

Response Tag Element

CLI Command

get_pic_detail

<pic-information>

show chassis pic

get_pic_information

<fpc-information>

show chassis fpc pic-status

get_rmon_alarm_information

<rmon-alarm-information>

show snmp rmon alarms

get_rmon_event_information

<rmon-event-information>

show snmp rmon events

get_rmon_information

<rmon-information>

show snmp rmon

get_route_engine_information

<route-engine-information>

show chassis routing-engine

get_route_information

<route-information>

show route

get_route_summary_information

<route-summary-information>

show route summary

get_rsvp_interface_information

<rsvp-interface-information>

show rsvp interface

get_rsvp_neighbor_information

<rsvp-neighbor-information>

show rsvp neighbor

get_rsvp_session_information

<rsvp-session-information>

show rsvp session

get_rsvp_statistics_information

<rsvp-statistics-information>

show rsvp statistics

get_rsvp_version_information

<rsvp-version-information>

show rsvp version

get_rtexport_instance_information

<rtexport-instance-information>

show route export instance

get_rtexport_table_information

<rtexport-table-information>

show route export

get_rtexport_target_information

<rtexport-target-information>

show route export vrf-target

get_scb_information

<sch-information>

show chassis scb

get_security_associations_information

<security-associations-information>

show ipsec security-associations

get_sfm_information

<scb-information>

show chassis sfm

get_snmp_information

<snmp-statistics>

show snmp statistics

get_source_class_statistics

<source-class-statistics>

show interfaces source-class

get_spmb_information

<spmb-information>

show chassis spmb

get_spmb_sib_information

<spmb-sib-information>

show chassis spmb sibs

get_ssb_information

<scb-information>

show chassis ssb

get_syslog_tag_information

<syslog-tag-information>

help syslog

get_system_uptime_information

<system-uptime-information>

show system uptime

get_system_users_information

<system-users-information>

show system users

get_ted_database_information

<ted-database-information>

show ted database

get_ted_link_information

<ted-link-information>

show ted link

get_ted_protocol_information

<ted-protocol-information>

show ted protocol

request_end_session

<end-session>

quit

request_ggsn_restart_interface

<interface-action-results>

request services ggsn restart interface

request_ggsn_restart_node

<node-action-results>

request services ggsn restart node

request_ggsn_start_imsi_trace NONE request services ggsn trace start imsi
request_ggsn_start_interface NONE request services ggsn start interface
request_ggsn_start_msisdn_trace NONE request services ggsn trace start msisdn
request_ggsn_stop_imsi_trace NONE request services ggsn trace stop imsi

request_ggsn_stop_interface

<interface-action-results>

request services ggsn stop interface

request_ggsn_stop_msisdn_trace NONE request services ggsn trace stop msisdn
request_ggsn_stop_node NONE request services ggsn stop node
request_ggsn_stop_trace_activity NONE request services ggsn trace stop all

request_ggsn_terminate_context

<pdp-context-deletion-results>

request services ggsn pdp terminate context

request_ggsn_terminate_contexts_apn

<apn-pdp-context-deletion-results>

request services ggsn pdp terminate apn

JUNOScript 5.5 API Guide

Mapping of Perl Queries to JUNOScript Tag Elements

Method

Response Tag Element

CLI Command

request_halt NONE request system halt
request_package_add NONE request system software add
request_package_delete NONE request system software delete
request_package_validate NONE request system software validate
request_reboot NONE request system reboot

Write a Perl Client Application

Mapping of Perl Queries to JUNOScript Tag Elements

@ JUNOScript 5.5 API Guide

Write a C Client Application

The following example illustrates how a client application written in C can use the secure
shell (ssh) or telnet protocol to establish a JUNOScript connection and session. In the line that
begins with the string execlp, the client application invokes the ssh command. (Substitute
the telnet command if appropriate.) The router argument to the execlp routine specifies the
hostname or IP address of the JUNOScript server. The junoscript argument is the command
that converts the connection to a JUNOScript session.

For more information about JUNOScript sessions, see “Start, Control, and End a JUNOScript
Session” on page 14.

int ipipes[2], opipes[2];
pid_t pid;

intrc;

char buf[BUFSIZ];

if (pipe(ipipes) <0 || pipe(opipes) <0)
err(1, "pipe failed");

pid = fork();
if (pid <0)
err(1, "fork failed");

if (pid == 0) {
dup2(opipes[0], STDIN_FILENO);
dup2(ipipes[1], STDOUT_FILENO);
dup2(ipipes| 1], STDERR_FILENO);
close(ipipes[0]); /* close read end of pipe */
close(ipipes[1]); /* close write end of pipe */
close(opipes[0]); /* close read end of pipe */
close(opipes[1]); /* close write end of pipe */

execlp("'ssh", "ssh", "-x", router, "junoscript", NULL);
err (1, "unable to execute: ssh %s junoscript,” router);

}

close(ipipes[1]); /* close write end of pipe */
close(opipes[0]); /* close read end of pipe */

if (write(opipes[1], initial_handshake, strlen(initial_handshake)) <0)
err(1, "writing initial handshake failed");

rc=read(ipipes[O], buf, sizeof(buf));

if (rc <0)
err(1, "read initial handshake failed");

Write a C Client Application

JUNOScript 5.5 API Guide

Index

W Index on page 87

JUNOScript 5.5 API Guide

Index

<ADOM/= 1aQ ... eeeeeee e 31
<<abort-acknowledgment/= tag.........ccccceccverrrurerrnrnnn 31
access protocols

prerequisites for using

clear-text...
ssh.........
SSL ettt
TeINEeL ..o
supported, liSt Of ..., 14
action attribute ... 57
active attribute or statement............cccooceee e 63
when replacing configuration level or object......... 64
ASCII, formatted
providing configuration data as...........c.cccceeeeennne
requesting configuration data as .
<AE-tIME/= a0 ... cvvee e
attributes
ACLIONTIMEIQE. ... eeee it
ACtION=0VerTide.....ceiiiiiiee et
action=replace
active
candidate
database.......ccooovieeeiiiie e
eIt ..
encoding
on client <?Xml?= Pl........c.cccoeiiiiiininnnnn. 19
on server <?Xml?= Pl..........ccccocceiiininnern. 21
format
on <<get-configuration>tagcoc0oo.... 50
on <<load-configuration=tagcc....... 57
hostname
on client <<junoscript= tag..........c.ccccescverrnne 20
on server <<junoscript= tag..............cccouver.n. 21
INACHIVE ..o 63
on <<rpc= tag, echoed on <<rpc-reply= tag........ 27
[0 PP UPPRPPPTPTN 21
release
on client <<junoscript=tag..........c.ccccesverrnne 20
0N server <<junoscript= tag..............cecouvernn. 21
rollback
on <<load-configuration=tagc....... 66

on <<lock-configuration> tag

version
on client <<junoscript=tag........cccccccccvervuren.
on client <?xml?>= Pl...........
on server <<junoscript= tag
on server <?Xml?= Pl.........cccceeirnierninnnnns
xmlns
0N <<jUNOSCIIPt= 1agveveeriuriiiieeriiiiieee s 21
on operational response tags..........ocveeeeerenes 28
xmlns:junos
0N <<juNOSCHIPE= 1agcevverrrreeiriiriicr e 21
oNn <<rpC-reply=tag.......cccccovvrrrrivrnineeennnnns 28
XIMINSIXNIM L 21
authentication for JUNOScript session
OVEIVIBW. ...ttt ettt e ettt ettt e et e e 18
PrOCEAUIES ..eveiieeiiiiiiie e ettt 23
<<authentication-response= tag............ccccevrveeerrvrernnn 23
automatic (value of rollback attribute on
<lock-configuration= tag)..........cccceeveerrvrerncenrernn. 49

candidate (value of database attribute on

<<get-configuration= tag)eeeeeeeerrrrireerernrnnns 50
<<challenge-response= tag........c.ccccceeeerrerrrrrerreernunnenn 23
<<ChECK/= 1aQeeiieiieeiiiiei e 66
child tags of request tag

definedcoviiiiee 11
mapping to CLI command optionscc.eee.... 36
mapping to fixed-form CLI command options...... 37
child tags of response tagc.eveveeeiiiiieeeininiiiiee e 11
C-language client applications............ccccvvvveiiieeciinennns 83
clear-text (access protocol), prerequisites 15
CLI
command options, mapping to tagsccceee.... 36
configuration statements, mapping to tags........... 40
for COMMENTS.......ooviiiiiiiie e,
foridentifierscccoovvieiin e,
for KEYWOrdscovvviiiiiiiiiiciecceeee e
for leaf statementsccceueeee.
for multiple options on one line
for multiple values for an option 43
for top-level container tagcccoceevvveeeennn. 40
connecting to JUNOScript server from.................. 18

Index

Index

client applications
C-laNQUAGE «...eeeeeieiiie e
Perl...ccccovenene
<<command=> tag
command-line interface See CLI

commands
junoscript
issued by client application.............c.cc.oceeee. 18
issued in CLI operational mode..................... 18
comments

about CLI configuration statements See CLI
configuration statements

JUNOScript and XMLcooiiiieiiaiiiieiieeeiiieeee e 12
<<commit-check-Success/= tagccccceevrrrrrverrruernnns 66
for scheduled commitccccoooiiiniiiiiiiee 69
for commit and synchronizecccccovvveeiinnenn. 68

<<commit-configuration> tag
enclosing <<at-time/> tag

enclosing <check/>=tag...........c......... "
enclosing <<confirmed/= tag.........cccc.coceeevurrennnn. 70
enclosing <<synchronize/> tagcccccceeerrunn 68
<<commit-results> tag
fOr COMMIL....oiiiiiiii e 67
for commit with confirmation ... 70
for commit and synchronize.............68
for scheduled commit......................69
for syntax checK........ccooceeiiiieiiie 66
<<commit-success/> tag
fOr COMMIL....oiiiiiiii e 67
for commit with confirmation...............ccccceeveene 70
for commit and synchronizeccccoooieeeeenn. 68
committed (value of database attribute on
<<get-configuration= tag)...........ccccsseuererriererrcnrrennnn 50
compatibility, verifying between application and
JUNOSCHIPE SEIVEN ...t 22
<<configuration= tagccccceerrrrrrrreeiiiiiiie e 40
configuration
activating section or object..........cccccoeceeeieriinnenn. 63
Changingccoovveeii 39
checking syntactic correctness66
COMMILEING .oeoeveeeieeee e ... 67
and synchronizing68
confirmation required............c.cccooveiiiiieennns 70
deactivating section or object.............cccccveerriinneen. 63
deleting
fixed-form option.........ccocceiieiiiiic 63
hierarchy levelccccceiniiennnen. ...61
multiple values from leaf statement.... .62
ODJECE. ... 61
loading as JUNOScript tags versus ASCII text 57
[OCKING .t 48
merging current and NEW..........cocveereiveeniveeenneen. 57
OVEITIAING -evveiiriieiiiie e
overview of procedures .
reactivating SeCtioncccccovvuveeeeiinniieeceee e,

JUNOScript 5.5 API Guide

replacing
=] 0 U] = U RTPTT 59
single level or objectcccoceeeviiiiieeiiiie, 59
requesting
candidate versus committedcceeeeenee. 50
COMPIELE ... 52
hierarchy level ... 52
JUNOScript tags versus formatted ASCII........ 50
level or single objectc..cccccvivieeiiiiiieeees 53
XML SCheMAeviiiiiiieiric e 54
rolling back to previous.........cccoecvveeeeiiiiieeeeccns 66
scheduling for commit in futureccccooeeeee. 69
statements See CLI configuration statements
synchronizing on Routing Enginescc....... 68
UNIOCKING v 71
<<configuration-text= tag
enclosing JUNOScript server response.................. 50
enclosing configuration data to load..................... 57
<<confirmed/= tag........ccccceirrmriieneeiiieee e 70
<<confirm-timeout= tag..........ccceeeerrrrireeeeiniiiec e 70
conventions
dOCUMENTALIONeoiiiiiiiiee e Xi
JUNOSCrIpt, SUMMAY ...coociviiiiiieiiiiee e 9
customer support, requesting............eeeeeevcvieeeeennenenn xiii
database attribute on <<get-configuration> tag........... 50
delete attribute ..o
display xml command..........

Document Object Model
document type definition See DTD

documentation coNVENtioNScuvvvveeeeeeeeeeeeeeeennnn, Xi
(10 U 30
DTD
[0 1= T =T RN 5
separate for JUNOS components...........ccocceeeennnee. 35

encoding attribute

on client <?XmI?= Plcccocoiiiniiiiiiiiiee e
on server <?xml?= PI.....
<<end-session/> tag................
entity references, predefined
error message from JUNOSCript Server...........ccoceeenee 31
examples, JUNOScript
C client application..........cccoooceeeiiiniiieiiesiieeen, 83
checking syntax of configuration..................c....... 66
committing configuration............cccocvvveeeeiniinnenn. 67
and synchronizing on Routing Engines......... 68
at scheduled time........ccccovieeriieiieee e 69
confirmation required..........ccocceeeviieeniinenne 71

deactivating
level of configuration hierarchy.................... 64
single object using formatted ASCII...
single object using JUNOScript tags....

deleting
fixed-form optioncoceiiiiiiiiiien e, 63
level of configuration hierarchy.................... 61
single configuration objectc.ocee. 62
value from list of multiple values................... 62
locking configuration..............ccocevevnen.

with automatic rollback
mapping of configuration statement to tag
comments about configuration statements ...46

dentifier ... 43

leaf statement with keyword and value......... 41

leaf statement with keyword only 42

multiple options on a single line.....

multiple options on multiple lines

multiple predefined values for an option....... 44

multiple user-defined values for an option43

top-level container statements 41
merging in new configuration level or object

using formatted ASCIlccoooviiiieiiniieene

using JUNOScript tagscccceeeueee
overriding current configuration
replacing configuration level or object

using formatted ASCIlccoooviiiieeiniieene 60
using JUNOSCFIPt tagsovvverieeeiiiieeesiieeeene 60
requesting
candidate configurationccccccoeviviineenn. 52
committed configuration...............ccccocueeeen. 50
configuration as formatted ASCII text 51
one configuration level .
one configuration objectcccceeeviirenne. 54
XML SChemaccveviieeeiiiicicc e 55
rolling back to previous configuration 66
automatically upon session exit 49
scheduling commit operation.............ccccceeerineeeen. 69
SESSION ..t eeiiie ettt

synchronizing configuration
unlocking configuration............c.cceeeuee.
Extensible Markup Language See XML

format attribute
on <<get-configuration= tagcccccceevrvurrreenn. 50
on <load-configuration> tag

<get-configuration> tag

database attributecoooe i, 50
format attribute.............cooevviiiii . 50
<<get-xnm-information= tag..............cccoccrerriruerernnnns 54

Index

hostname attribute
on client <<junosCript= tagccccceerrrrueereerinnns 20
0N server <<junosCript= tag..........ccccceevevvvrrersrinnns 21

identifier for CLI configuration object See CLI
configuration statements

inactive attribute or statement.............ccoooiieiiiiniiinnnn. 63
when replacing configuration level or object 64
<<JUNOS:COMMENT=> 1aQ....couvvveieeiiiiiee e 45
JUNOScript API
comments, treatment of..............ocvveveeiiiiiiiiniinnnn, 12
CONVENTIONSttt 9
INErOAUCHION....ciiiiee e 3
predefined entity references...........coccvveeeeeiiineenn. 12

server See JUNOScript server

session See JUNOScript session

treatment of white space............cccccveeeinnnnn. 11, 47
junoscript command

issued by client applicationccccccceeeeiiinneen.

issued in CLI operational mode
JUNOSCHIPE SEIVEL ...ceiiiiiiiiiiee ettt

classes of response tags emitted by............c......... 27

closing coNNECtion 10..........cccveviiieiriie e

CONNECEING 1O ..vvvieiiiieiiiie e

from CLI....oooiiiiiies

directing to halt operation

error message from..............

establishing session Withccooce s

parsing output from.........cccceeviiiii e

Sending reqUESE t0......ocvvviiieeeiiee e

verifying compatibility with application................ 22

Warning from ... 31
JUNOScript session

authentication and SECUNtYccocceveviieeeiienennns 18

brief OVErVIEWcooovviiiii 6

EXAMPIE ..o 32
<<junoscript= tag

emitting...

parsing

PUIPOSE ..ottt
JUNOS::Device Modulecoocuveveeiiiiiieieeniiieecee e 75

keyword in CLI configuration statement See CLI
configuration statements

Index @

Index

leaf statement See CLI configuration statements
<load-configuration= tag
action attribute

IMEIGE .ttt 57
override59
replace........59
format attribute...........cccoovriieeii e 57
rollback attribute............ccoveiiiiiiieee e 66
Ul AttriDULE .. 56
<<lock-configuration= tag...........cccceeevvrerirrrrnreesrnnens 48
rollback attribute...........cccvvveiiiiiniiieiic e 49
merge (value of action attribute on
<<load-configuration= tag)cccceererriurrereennnnns 57
<<message=> tag (for authentication)................cccccc.... 23
<name= tag
fOr COMMIL....oiiiiiiie e 67
for commit with confirmation ... 70
for commit and synchronize.............68
for scheduled commit......................69
for syntax check..........cccoooiiiiiiiis 66
<NAMESPACE= taJooveriririririrre e 54
namespaces See XML namespaces
newline character, usage guidelingsccccevvuveenns 11
operational reqUEeStS........ccooiiieeeiiiiiiie e 35
operational reSPONSESccoccuvieieeririieiee e 28
options in CLI configuration statements See CLI
configuration statements
0S ALLFDULE ... 21
output from JUNOScript server, parsing30
<OULPUL= 80 e ieeeeeeeeiiieeiiiiin e 37
override (value of action attribute on
<<load-configuration= tag)...........cccceeeerriurreeeennnnns 59
Perl client appliCationscccovoveeeiiiienieee e 75
Pls
USage GUIdEINESoviveiieiiiie et 12
<?xml?=
EMITEING ..eeiiiiieee e 19
parsing .21
purpose defined10
predefined entity referencesccccvevvveeiieeniiiees 12
prerequisites for access protocols.........ccccvvveveeernennnn.. 15
processing instructions See Pls
protocols, supported VErsions...........ccceeevuvveeeeeniennenn. 23

@ JUNOScript 5.5 API Guide

release attribute
on client <<junosCript= tag.........c.cccccereerrirrereannns 20
0N server <<junosCript= tag...........ccccceeerrivrereennns 21
replace (value of action attribute on
<load-configuration> tag)
replace attribute or statement
when changing object’s activation state 64
request tags
defiNed......covviiiiiee 10
usage guidelines
CONFIQUIAtiON.......ccvviiiiiee e 39
general.......cocoeeeeennns
operational
<<request-end-SesSioN/= tagccccervreeerrriiieeeennnnne 30
<<request-login= tag.........ccccerurrrrrreeirirenineenieee e 23
response tags
defined......ccvviiiiiee
parsing operational
usage guUIidelineSc.ueeeeeiiiiieieee e
rollback attribute
on <<load-configuration= tag............ccccceevvververnn 66
on <<lock-configuration=tag............ccccecveuvvrrurrcne 49
router configuration See configuration
<<routing-engine= tag

fOor COMMIt.....oooeiiiiiii 67

for commit with confirmationcoc..e. 70

for commit and synchronizecccccoviieennnen. 68

for scheduled commitcocoeiiiiiiiiiiee, 69

for syntax check.........cccvvviiiiiiiiiiicc e, 66
<rpc=> tag

purpose definedcooooiiiiiiiiiii e 10

usage guIidelineS.......c.eeeveiiiiiieeeee e 26
<rpc-reply= tag

purpose definedcoocviiiiieiiiii e 10

USAge GUIdEIINES ...covviiiiiie et 27
SAX e 30
schema See XML schema
security of JUNOSCFipt SESSION......cc.uvveeeeeiiiiieeeeeriiieen. 18
SESSION CONLIOl tagS .vveevvvie et 10
session See JUNOScript session
Simple APLFOr XML ...oooiiiiiieiiee e 30
space character, usage guidelings...........cccceveeeeeninnenen. 11
ssh (access protocol), prerequisites..........oocvveeeeeriennen. 16
SSL (access protocol), prerequisitesccceevcuveeeeennee 16
statement (CLI)

ACHIVE Lot 63

INACTIVE Lo 63
<TSEALUS™ TAQGeeuvuviriieieriiie et ee e 23
support, technical, requesting...........c.cccevvvvieeeeininnn xiii
supported protocol VErSIONSc.uveeeeevririeeeeennieieeen. 23
<<SYNChronize/= tagccccovvveiiiiieieecceceec e 68

tags

<ADOM/=
<<abort-acknowledgment/>
<at-time/=.......cccccoiiinniniic
<<authentication-response=>
<<challenge-response=...................... .
<<ChECK/= ...
child of request or response tag See child tags
<COMMANA=>....oiiiiie e
<<commit-check-SUCCESS/=cccvririurieiiirienns
for scheduled commit
for commit and synchronize
<<commit-configuration>..................... .
enclosing <<at-time/=tag.........cccccceevvuveeenn.
enclosing <<check/=tag...........cccoocvvrriurrennn
enclosing <<confirmed/=tag..........c.c.ccecn.... 70
enclosing <<synchronize/>tag............c........ 68
<<commit-results=
for commit........cccoooiiiiiiiniie.
for commit with confirmation .
for commit and synchronizecc.ccoe...
for scheduled commitccccoviviiiiiiiienns
for syntax check........ccooeviiiiiiiiicieen
<<commit-success/>
for commit........ooooiiieiiiii
for commit with confirmation .
for commit and synchronizecccccoe...
<<configuration-text=
enclosing JUNOScript server response........... 50
enclosing configuration data to load.............. 57
<<confirmed/>=ccccciniiiiiii e
<<confirm-timeout=
displaying CLI output as .
<eNd-SESSION/=eeeiiiiieiiie e
<<get-configuration>=
database attributeccccooiiiiiiiiiiiiiieee, 50
format attribute...........cccoo o, 50
<<get-xnm-information=..............ccccceeerrrrrennne 54
<<JUNOS:COMMENT=>ccviieiiiee e e e e ree e 45
<<junoscript=
EMITLING o
parsing...
purpose defined "
JUNOScript conventions for...........ccccoovivieeennininnne. 4
<load-configuration=
action attribute=mergecccccooeeeiiirenn 57
action attribute=overridecccoevrenen. 59
action attribute=replace
format attribute...............cocuveeeee.
rollback attribute..............c......... .
url attributeooovie e
<<lock-configuration=............cccccceervmvirineennneennns
rollback attribute............ccoceeviiieiiiiiciecce
mapping
to CLI command options...........ccccveeeeerninnenn.
to CLI configuration statements

Index

<<message=> (for authentication) 23
<name=>>
for cCommit......oooeeeiiiiie 67
for commit with confirmation 70
for commit and synchronizeccc........ 68
for scheduled commitcccoeiiiiiinnen. 69
for syntax checkK..........ccocooiiiiiiinii e 66
<NAMESPACE™eeiiiiiieiiieeeaee e e e e e e eeeeeas 54
SOULPULS ..ottt 37

request See request tags
<request-end-session/>

<<request-login=..........cccocriiniiiine e
response See response tags
<routing-engine=
for CoOmMmit......oooieeiiiiie 67
for commit with confirmation 70
for commit and synchronizeccc....... 68
for scheduled commitccoceiiiiiiiennenn. 69
for syntax checK..........ccocceiiiiiiiie 66
<rpC>
purpose definedooceeiiiiei i 10
usage gUIdelinesS.......coooveeeeiiieeiiiiicieceieee 26
<rpc-reply=

purpose defined
usage guidelines

session controlcceeeene.
TSEATUS™ ..o
<<SYNChronize/=cccccooiiiiiiii e
<EYPE= .
<<sundocumeNnted=cccccoiurireeeeiiiiiee e
<<unlock-configuration/>.............ccccceeerricrennn. 71
TUSEIMAMESS ...iiiiiiiiieiieire et
XML conventions
SXNMEEITOI S .ottt
<XNMIWAINING™ ..o 31
<<xSd:SChema=cccccciiiiiiiii e 54
TCP access protocol See clear-text
technical support, requesting.............ocueveeeiiniieeeennns xiii
telnet (access protocol), prerequisites........c.ccccvvveeeennee 17
text
formatted ASCII
providing configuration data as..................... 57
requesting configuration data as 50
value of format attribute
on <<get-configuration>=tagcc.c....cou... 50
on <<load-configuration= tag...........c...c.c..... 57
<EYPE= 1AQ +veeevvreerrreeiiiee e

typefaces, use of in documentation

<sundocumeNnted= tag.........cccceceeerrurrrreeeriiiriee e
<<unlock-configuration/> tag....................
url attribute on <<load-configuration= tag....

<USEINAME= Ta0....eeerveerireiiienieeeetee e saee e

Index

Index

version attribute

on client <<junosCript= tag.........cccccseerveereerrniunnnn.
on client <<?XMI?= Pl.......c.cccoiiiiniiiiiiineenes
on server <<junoscript= tag
on server <?xml?=Pl........c.ccceoun...
warning from JUNOSCFIpt SEIVeroocoveeeeeiiiiveeeeenn. 31
white space, usage guidelines...........ccccoocvviieeeeennns 11, 47
XML et
namespaces
defined by <<junoscript= tag .
defined by <xmlns:junos= attribute 28
defined for operational response tags........... 28
Pls See Pls
schema, requUeStingoccveeveeiiiiieeiee e 54
xml
value of format attribute on <<get-configuration>=
L7 1o TP 50
value of format attribute on <<load-configuration>
BAG e 57
<?xml?= PI
EMITEING oo 19
PAISINGeeeeiieee ettt 21
purpose definedccovvveiiiiiiiiee 10
xmlns attribute
0N <<JUNOSCIIPE= a0 ...eeoivvvieeeeeiiiiie e

on operational response tags
xmlns:junos attribute

ON <<JUNOSCHIPE= a0veeirreeeiiiee e 21
ON <<rpC-reply=tag.........ccoeeervrrerieieniiee e 28
XMINS:XNM attribute. ..o 21
<XNMEEITOr=> tag.........cceovrrrirninrnennens .31
<<xnm:warning=> tag .31
<<XSA:SCNEMA= 1aQ .. .ovvveerieee e 54

@ JUNOScript 5.5 API Guide

	Table of Contents
	About this Manual

	Part 1
	Overview
	Chapter 1
	Introduction to the JUNOScript API 3

	Part 2
	Session Control, Operational Requests, and Router Configuration
	Chapter 2
	JUNOScript Session Control 9

	Chapter 3
	Operational Requests 35

	Chapter 4
	Router Configuration 39

	Part 3
	Write JUNOScript Client Applications
	Chapter 5
	Write a Perl Client Application 75

	Chapter 6
	Write a C Client Application 83

	Part 4
	Index
	Index
	Index 87

	About this Manual
	Objectives
	Audience
	Document Organization
	General Document Conventions
	List of Technical Publications
	Documentation Feedback
	How to Request Support

	Overview
	Introduction to the JUNOScript API
	About XML
	XML and JUNOScript Tags
	Document Type Definition

	Advantages of Using the JUNOScript API
	Overview of a JUNOScript Session

	Session Control, Operational Requests, and Router Configuration
	JUNOScript Session Control
	General JUNOScript Conventions
	Ordering and Context for Session Control Tag Elements
	Ordering and Context for Request and Response Tag Elements
	Ordering and Context for a Request Tag Element’s Child Tag Elements
	Ordering and Context for a Response Tag Element Element’s Child Tag Elements
	Spaces, Newlines, and Other White Space Characters
	XML Comments
	XML Processing Instructions
	Predefined Entity References

	Start, Control, and End a JUNOScript Session
	Supported Access Protocols
	Prerequisites for Establishing a Connection
	Connect to the JUNOScript Server
	Start the JUNOScript Session
	Authenticate with the JUNOScript Server
	Exchange Tagged Data
	End the Session and Close the Connection

	Handle an Error Condition
	Halt a Request
	Display CLI Output as JUNOScript Tag Elements
	Example of a JUNOScript Session

	Operational Requests
	Request Operational Information
	Map Child Tag Elements to Options with Variable Values
	Map Child Tag Elements to Fixed-Form Options

	Parse an Operational Response
	Requests and Responses without Defined JUNOScript Tag Elements

	Router Configuration
	Mapping between CLI Configuration Statements and JUNOScript Tag Elements
	Tag Element Mappings for Top-Level (Container) Statements
	Tag Element Mappings for Leaf Statements
	Tag Element Mappings for Identifiers
	Tag Element Mappings for Leaf Statements with Multiple Values
	Tag Element Mappings for Multiple Options on One or More Lines
	Tag Element Mapping for Comments about Configuration Statements��

	Same Tag Elements Used for Requests and Responses
	Overview of Router Configuration Procedures
	Lock the Candidate Configuration
	Automatically Discard Uncommitted Changes

	Request Configuration Information
	Specify the Committed or Candidate Configuration
	Specify Formatted ASCII or JUNOScript-Tagged Output
	Request the Complete Configuration
	Request One Hierarchy Level
	Request a Single Configuration Object
	Request an XML Schema for the Configuration Hierarchy

	Change the Candidate Configuration
	Provide Configuration Data as Formatted ASCII or JUNOScript Tag Elements
	Merge Statements into the Current Configuration
	Replace (Override) the Entire Current Configuration
	Replace a Configuration Element
	Delete a Configuration Element
	Change a Configuration Element’s Activation State
	Replace a Configuration Element and Change Its Activation State Simultaneously
	Roll Back to a Previous Configuration

	Verify the Syntactic Correctness of the Candidate Configuration
	Commit the Candidate Configuration
	Commit and Synchronize the Configuration on Both Routing Engines
	Commit the Configuration at a Specified Time
	Commit a Configuration but Require Confirmation

	Unlock the Candidate Configuration

	Write JUNOScript Client Applications
	Write a Perl Client Application
	Download the Module and Sample Scripts
	Module and Sample Scripts
	Request and Load Configuration Data
	Mapping of Perl Queries to JUNOScript Tag Elements

	Write a C Client Application

	Index
	Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

